Unsupervised Optimal Power Flow Using Graph Neural Networks
- URL: http://arxiv.org/abs/2210.09277v1
- Date: Mon, 17 Oct 2022 17:30:09 GMT
- Title: Unsupervised Optimal Power Flow Using Graph Neural Networks
- Authors: Damian Owerko, Fernando Gama, Alejandro Ribeiro
- Abstract summary: We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
- Score: 172.33624307594158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal power flow (OPF) is a critical optimization problem that allocates
power to the generators in order to satisfy the demand at a minimum cost.
Solving this problem exactly is computationally infeasible in the general case.
In this work, we propose to leverage graph signal processing and machine
learning. More specifically, we use a graph neural network to learn a nonlinear
parametrization between the power demanded and the corresponding allocation. We
learn the solution in an unsupervised manner, minimizing the cost directly. In
order to take into account the electrical constraints of the grid, we propose a
novel barrier method that is differentiable and works on initially infeasible
points. We show through simulations that the use of GNNs in this unsupervised
learning context leads to solutions comparable to standard solvers while being
computationally efficient and avoiding constraint violations most of the time.
Related papers
- Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
Constrained optimization problems arise in various engineering system operations such as inventory management electric power grids.
This work introduces a learning scheme using Bayesian Networks (BNNs) to solve constrained optimization problems under limited data and restricted model times.
We show that the proposed learning method outperforms conventional BNN and deep neural network (DNN) architectures.
arXiv Detail & Related papers (2024-10-04T02:10:20Z) - Learning to Solve Combinatorial Optimization under Positive Linear Constraints via Non-Autoregressive Neural Networks [103.78912399195005]
Combinatorial optimization (CO) is the fundamental problem at the intersection of computer science, applied mathematics, etc.
In this paper, we design a family of non-autoregressive neural networks to solve CO problems under positive linear constraints.
We validate the effectiveness of this framework in solving representative CO problems including facility location, max-set covering, and traveling salesman problem.
arXiv Detail & Related papers (2024-09-06T14:58:31Z) - Power Control with QoS Guarantees: A Differentiable Projection-based
Unsupervised Learning Framework [14.518558523319518]
Deep neural networks (DNNs) are emerging as a potential solution to solve NP-hard wireless resource allocation problems.
We propose a novel unsupervised learning framework to solve the classical power control problem in a multi-user channel.
We show that the proposed solutions not only improve the data rate but also achieve zero constraint violation probability, compared to the existing computations.
arXiv Detail & Related papers (2023-05-31T14:11:51Z) - Proximal Policy Optimization with Graph Neural Networks for Optimal Power Flow [4.27638925658716]
Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on data.
Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems.
We propose an architecture that learns how to solve the problem and that is at the same time able to unseen scenarios.
arXiv Detail & Related papers (2022-12-23T17:00:00Z) - Solving AC Power Flow with Graph Neural Networks under Realistic
Constraints [3.114162328765758]
We propose a graph neural network architecture to solve the AC power flow problem under realistic constraints.
In our approach, we demonstrate the development of a framework that uses graph neural networks to learn the physical constraints of the power flow.
arXiv Detail & Related papers (2022-04-14T14:49:34Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
We tackle the problem of N-k security-constrained optimal power flow (SCOPF)
N-k SCOPF is a core problem for the operation of electrical grids.
Inspired by methods in adversarially robust training, we frame N-k SCOPF as a minimax optimization problem.
arXiv Detail & Related papers (2021-11-12T22:08:10Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
Machine learning assisted optimal power flow (OPF) aims to reduce the computational complexity of non-linear and non- constrained power flow problems.
We assess the performance of a variety of FCNN, CNN and GNN models for two fundamental approaches to machine assisted OPF.
For several synthetic grids with interconnected utilities, we show that locality properties between feature and target variables are scarce.
arXiv Detail & Related papers (2021-10-01T10:39:53Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.