論文の概要: AnalogNet: Convolutional Neural Network Inference on Analog Focal Plane
Sensor Processors
- arxiv url: http://arxiv.org/abs/2006.01765v2
- Date: Sun, 21 Jun 2020 17:19:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 00:22:02.514868
- Title: AnalogNet: Convolutional Neural Network Inference on Analog Focal Plane
Sensor Processors
- Title(参考訳): AnalogNet: アナログ平面センサプロセッサにおける畳み込みニューラルネットワーク推論
- Authors: Matthew Z. Wong (1), Benoit Guillard (2), Riku Murai (1), Sajad Saeedi
(3), Paul H.J. Kelly (1) ((1) Imperial College London, (2) EPFL Swiss Federal
Institute of Technology Lausanne, (3) Ryerson University)
- Abstract要約: アナログ平面センサプロセッサ(FPSP)と呼ばれるユニークな種類のデバイスの性能を利用した高速でエネルギー効率の良い畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
センサアレイが収集したデータを別のプロセッサに送信して処理する従来のビジョンシステムとは異なり、FPSPは撮像装置自体でデータを処理できる。
提案するアーキテクチャはAnalogNetと呼ばれ,MNISTの手書き文字認識タスクにおいて,1フレームあたり0.7mJの速度で96.9%の精度で動作可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a high-speed, energy-efficient Convolutional Neural Network (CNN)
architecture utilising the capabilities of a unique class of devices known as
analog Focal Plane Sensor Processors (FPSP), in which the sensor and the
processor are embedded together on the same silicon chip. Unlike traditional
vision systems, where the sensor array sends collected data to a separate
processor for processing, FPSPs allow data to be processed on the imaging
device itself. This unique architecture enables ultra-fast image processing and
high energy efficiency, at the expense of limited processing resources and
approximate computations. In this work, we show how to convert standard CNNs to
FPSP code, and demonstrate a method of training networks to increase their
robustness to analog computation errors. Our proposed architecture, coined
AnalogNet, reaches a testing accuracy of 96.9% on the MNIST handwritten digits
recognition task, at a speed of 2260 FPS, for a cost of 0.7 mJ per frame.
- Abstract(参考訳): 本稿では,アナログFPSP(Focal Plane Sensor Processors)と呼ばれる,センサとプロセッサが同一のシリコンチップ上に組み合わさったユニークな種類のデバイスの機能を利用する,高速でエネルギー効率のよい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
センサアレイが収集したデータを別のプロセッサに送信して処理する従来のビジョンシステムとは異なり、FPSPは撮像装置自体でデータを処理できる。
このユニークなアーキテクチャは、限られた処理資源と近似計算を犠牲にして、超高速画像処理と高エネルギー効率を可能にする。
本研究では、標準的なCNNをFPSPコードに変換する方法を示し、アナログ計算エラーに対するロバスト性を高めるためにネットワークをトレーニングする方法を示す。
提案するアーキテクチャはAnalogNetと呼ばれ,MNISTの手書き文字認識タスクにおいて,1フレームあたり0.7mJの速度で96.9%の精度で動作可能である。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Digital-analog hybrid matrix multiplication processor for optical neural
networks [11.171425574890765]
光ニューラルネットワーク(ONN)のためのディジタルアナログハイブリッド光コンピューティングアーキテクチャを提案する。
しきい値に基づく論理レベルと決定を導入することにより、計算精度を大幅に向上させることができる。
画素誤り率(PER)は18.2dBの信号対雑音比(SNR)で1.8times10-3$以下である。
論文 参考訳(メタデータ) (2024-01-26T18:42:57Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron Convolutional Neuronal Network Processing Pipeline [5.8859061623552975]
我々は、イベントベースのカメラと低消費電力非同期スパイク畳み込みニューラルネットワーク(sCNN)コンピューティングアーキテクチャを単一チップ上に組み込んだ、チップ上のスマートビジョンセンサシステム(SoC)を提案する。
センサと処理を1つのダイに組み合わせることで、ユニット生産コストを大幅に削減できる。
非同期アーキテクチャ、個々のブロック、およびsCNN処理原理と他のsCNN対応プロセッサに対するベンチマークを示す。
論文 参考訳(メタデータ) (2023-04-13T19:28:57Z) - PixelRNN: In-pixel Recurrent Neural Networks for End-to-end-optimized
Perception with Neural Sensors [42.18718773182277]
従来の画像センサは高速フレームレートで高解像度画像をデジタル化し、さらなる処理のためにセンサーから送信する必要がある大量のデータを生成する。
我々は、純粋なバイナリ演算を用いて、センサ上の時間的特徴を符号化する効率的なリカレントニューラルネットワークアーキテクチャ、PixelRNNの処理を開発する。
PixelRNNは、従来のシステムと比較して、センサから送信されるデータ量を64倍に削減し、手ジェスチャー認識や唇読解タスクの競合精度を提供する。
論文 参考訳(メタデータ) (2023-04-11T18:16:47Z) - Single-Shot Optical Neural Network [55.41644538483948]
深層ニューラルネットワークに必要な計算資源を削減するために,「重定常」アナログ光学・電子ハードウェアが提案されている。
我々は、スケーラブルで1層当たり単発の重み付き光学プロセッサを提案する。
論文 参考訳(メタデータ) (2022-05-18T17:49:49Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Fully Embedding Fast Convolutional Networks on Pixel Processor Arrays [16.531637803429277]
本稿では,PPA(Pixel processor array)視覚センサのための新しいCNN推論手法を提案する。
提案手法は, 畳み込み層, 最大プーリング, ReLu, およびPPAセンサ上に完全に接続された最終層を実現する。
これは、外部処理を必要としないPPA視覚センサデバイスのプロセッサアレイで完全に行われたCNN推論を示す最初の研究である。
論文 参考訳(メタデータ) (2020-04-27T01:00:35Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
我々は、計算複雑性を低減し、ニューラルネットワーク処理を高速化する畳み込みニューラルネットワーク変換を考える。
畳み込みニューラルネットワーク(CNN)の使用は、計算的に要求が多すぎるにもかかわらず、画像認識の標準的なアプローチである。
論文 参考訳(メタデータ) (2020-02-18T17:42:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。