論文の概要: Detecting Audio Attacks on ASR Systems with Dropout Uncertainty
- arxiv url: http://arxiv.org/abs/2006.01906v2
- Date: Tue, 15 Sep 2020 01:41:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 00:21:04.349962
- Title: Detecting Audio Attacks on ASR Systems with Dropout Uncertainty
- Title(参考訳): ドロップアウト不確実性のあるASRシステムにおけるオーディオアタックの検出
- Authors: Tejas Jayashankar, Jonathan Le Roux, Pierre Moulin
- Abstract要約: 我々の防衛は、最適化された摂動と周波数マスキングによって生成された攻撃を検出することができることを示す。
我々は、MozillaのCommonVoiceデータセット、UrbanSoundデータセット、およびLibriSpeechデータセットの抜粋に対する防御をテストする。
- 参考スコア(独自算出の注目度): 40.9172128924305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various adversarial audio attacks have recently been developed to fool
automatic speech recognition (ASR) systems. We here propose a defense against
such attacks based on the uncertainty introduced by dropout in neural networks.
We show that our defense is able to detect attacks created through optimized
perturbations and frequency masking on a state-of-the-art end-to-end ASR
system. Furthermore, the defense can be made robust against attacks that are
immune to noise reduction. We test our defense on Mozilla's CommonVoice
dataset, the UrbanSound dataset, and an excerpt of the LibriSpeech dataset,
showing that it achieves high detection accuracy in a wide range of scenarios.
- Abstract(参考訳): 音声認識システム(asr)を騙すために、様々な逆オーディオ攻撃が最近開発されている。
本稿では,ニューラルネットワークのドロップアウトによる不確実性に基づく攻撃に対する防御を提案する。
我々の防御は、最先端のasrシステム上で最適化された摂動と周波数マスキングによって生成される攻撃を検知できることを示します。
さらに、ノイズ低減に免疫のある攻撃に対して、防御を堅牢にすることができる。
我々は、MozillaのCommonVoiceデータセット、UrbanSoundデータセット、およびLibriSpeechデータセットの抜粋に対する防御をテストする。
関連論文リスト
- Mel Frequency Spectral Domain Defenses against Adversarial Attacks on
Speech Recognition Systems [33.21836814000979]
本稿では,メルスペクトル領域を用いた音声特異的防音について検討し,新しい防音法「メル領域ノイズフラッディング(MDNF)」を提案する。
MDNFは音声信号の再合成に先立って音声のメルスペクトルに付加雑音を適用する。
プロジェクテッド勾配降下(PGD)やカルリーニ・ワグナー(CW)攻撃などの強力なホワイトボックス攻撃に対する防御実験を行った。
論文 参考訳(メタデータ) (2022-03-29T06:58:26Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - Robustifying automatic speech recognition by extracting slowly varying features [16.74051650034954]
敵攻撃に対する防御機構を提案する。
このような方法で事前処理されたデータに基づいてトレーニングされたハイブリッドASRモデルを使用します。
本モデルでは, ベースラインモデルと類似したクリーンデータの性能を示すとともに, 4倍以上の堅牢性を示した。
論文 参考訳(メタデータ) (2021-12-14T13:50:23Z) - Perceptual-based deep-learning denoiser as a defense against adversarial
attacks on ASR systems [26.519207339530478]
敵対的攻撃は、元の音声信号に小さな摂動を加えることで、誤分類を強制しようとする。
本稿では,ASRパイプラインのプリプロセッサとしてニューラルネットベースのデノイザを用いることで,この問題に対処することを提案する。
その結果,知覚的モチベーションのある損失関数を用いて難聴者の訓練を行うことで,対向的ロバスト性が向上することが判明した。
論文 参考訳(メタデータ) (2021-07-12T07:00:06Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
この研究は、特定の攻撃アルゴリズムを知らずにASVの敵防衛を行う最初の試みの一つである。
本研究の目的は,1) 対向摂動浄化と2) 対向摂動検出の2つの視点から対向防御を行うことである。
実験の結果, 検出モジュールは, 約80%の精度で対向検体を検出することにより, ASVを効果的に遮蔽することがわかった。
論文 参考訳(メタデータ) (2021-06-01T07:10:54Z) - WaveGuard: Understanding and Mitigating Audio Adversarial Examples [12.010555227327743]
本稿では,ASRシステムに対する敵入力を検出するフレームワークであるWaveGuardを紹介する。
本フレームワークは,音声変換機能を組み込んで原音声と変換音声のasr転写を解析し,逆入力を検出する。
論文 参考訳(メタデータ) (2021-03-04T21:44:37Z) - Cortical Features for Defense Against Adversarial Audio Attacks [55.61885805423492]
本稿では,聴覚野の計算モデルを用いて,音声に対する敵対的攻撃に対する防御手法を提案する。
また,大脳皮質の特徴は,普遍的な敵の例に対する防御に有効であることを示す。
論文 参考訳(メタデータ) (2021-01-30T21:21:46Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z) - Detecting Adversarial Examples for Speech Recognition via Uncertainty
Quantification [21.582072216282725]
機械学習システム、特に自動音声認識(ASR)システムは、敵の攻撃に対して脆弱である。
本稿では,ハイブリッドASRシステムに着目し,攻撃時の不確実性を示す能力に関する4つの音響モデルを比較した。
我々は、受信演算子曲線スコア0.99以上の領域の逆例を検出することができる。
論文 参考訳(メタデータ) (2020-05-24T19:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。