Exploiting Class Labels to Boost Performance on Embedding-based Text
Classification
- URL: http://arxiv.org/abs/2006.02104v2
- Date: Tue, 1 Sep 2020 19:39:36 GMT
- Title: Exploiting Class Labels to Boost Performance on Embedding-based Text
Classification
- Authors: Arkaitz Zubiaga
- Abstract summary: embeddings of different kinds have recently become the de facto standard as features used for text classification.
We introduce a weighting scheme, Term Frequency-Category Ratio (TF-CR), which can weight high-frequency, category-exclusive words higher when computing word embeddings.
- Score: 16.39344929765961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text classification is one of the most frequent tasks for processing textual
data, facilitating among others research from large-scale datasets. Embeddings
of different kinds have recently become the de facto standard as features used
for text classification. These embeddings have the capacity to capture meanings
of words inferred from occurrences in large external collections. While they
are built out of external collections, they are unaware of the distributional
characteristics of words in the classification dataset at hand, including most
importantly the distribution of words across classes in training data. To make
the most of these embeddings as features and to boost the performance of
classifiers using them, we introduce a weighting scheme, Term
Frequency-Category Ratio (TF-CR), which can weight high-frequency,
category-exclusive words higher when computing word embeddings. Our experiments
on eight datasets show the effectiveness of TF-CR, leading to improved
performance scores over the well-known weighting schemes TF-IDF and KLD as well
as over the absence of a weighting scheme in most cases.
Related papers
- XAI-CLASS: Explanation-Enhanced Text Classification with Extremely Weak
Supervision [6.406111099707549]
XAI-CLASS is a novel explanation-enhanced weakly-supervised text classification method.
It incorporates word saliency prediction as an auxiliary task.
XAI-CLASS outperforms other weakly-supervised text classification methods significantly.
arXiv Detail & Related papers (2023-10-31T23:24:22Z) - Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
We show that matching class priors correlates strongly with the oracle upper bound performance.
We also demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
arXiv Detail & Related papers (2023-09-10T10:57:41Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - FastClass: A Time-Efficient Approach to Weakly-Supervised Text
Classification [14.918600168973564]
This paper proposes FastClass, an efficient weakly-supervised classification approach.
It uses dense text representation to retrieve class-relevant documents from external unlabeled corpus.
Experiments show that the proposed approach frequently outperforms keyword-driven models in terms of classification accuracy and often enjoys orders-of-magnitude faster training speed.
arXiv Detail & Related papers (2022-12-11T13:43:22Z) - Selective Text Augmentation with Word Roles for Low-Resource Text
Classification [3.4806267677524896]
Different words may play different roles in text classification, which inspires us to strategically select the proper roles for text augmentation.
In this work, we first identify the relationships between the words in a text and the text category from the perspectives of statistical correlation and semantic similarity.
We present a new augmentation technique called STA (Selective Text Augmentation) where different text-editing operations are selectively applied to words with specific roles.
arXiv Detail & Related papers (2022-09-04T08:13:11Z) - Label Semantic Aware Pre-training for Few-shot Text Classification [53.80908620663974]
We propose Label Semantic Aware Pre-training (LSAP) to improve the generalization and data efficiency of text classification systems.
LSAP incorporates label semantics into pre-trained generative models (T5 in our case) by performing secondary pre-training on labeled sentences from a variety of domains.
arXiv Detail & Related papers (2022-04-14T17:33:34Z) - On Guiding Visual Attention with Language Specification [76.08326100891571]
We use high-level language specification as advice for constraining the classification evidence to task-relevant features, instead of distractors.
We show that supervising spatial attention in this way improves performance on classification tasks with biased and noisy data.
arXiv Detail & Related papers (2022-02-17T22:40:19Z) - Generalized Funnelling: Ensemble Learning and Heterogeneous Document
Embeddings for Cross-Lingual Text Classification [78.83284164605473]
emphFunnelling (Fun) is a recently proposed method for cross-lingual text classification.
We describe emphGeneralized Funnelling (gFun) as a generalization of Fun.
We show that gFun substantially improves over Fun and over state-of-the-art baselines.
arXiv Detail & Related papers (2021-09-17T23:33:04Z) - TF-CR: Weighting Embeddings for Text Classification [6.531659195805749]
We introduce a novel weighting scheme, Term Frequency-Category Ratio (TF-CR), which can weight high-frequency, category-exclusive words higher when computing word embeddings.
Experiments on 16 classification datasets show the effectiveness of TF-CR, leading to improved performance scores over existing weighting schemes.
arXiv Detail & Related papers (2020-12-11T19:23:28Z) - Text Classification with Few Examples using Controlled Generalization [58.971750512415134]
Current practice relies on pre-trained word embeddings to map words unseen in training to similar seen ones.
Our alternative begins with sparse pre-trained representations derived from unlabeled parsed corpora.
We show that a feed-forward network over these vectors is especially effective in low-data scenarios.
arXiv Detail & Related papers (2020-05-18T06:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.