論文の概要: Self-Supervised Localisation between Range Sensors and Overhead Imagery
- arxiv url: http://arxiv.org/abs/2006.02108v2
- Date: Wed, 23 Sep 2020 12:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 18:30:41.061489
- Title: Self-Supervised Localisation between Range Sensors and Overhead Imagery
- Title(参考訳): 距離センサと頭上画像の自己教師あり局所化
- Authors: Tim Y. Tang, Daniele De Martini, Shangzhe Wu, Paul Newman
- Abstract要約: 市販の衛星画像は、以前のセンサーマップが利用できない場合に、ユビキタスで安価で強力な車両位置決めツールとなり得る。
そこで本研究では,モダリティの違いに対処するだけでなく,学習のコストも低く,計量的に正確な基底真理を伴わない自己教師型学習法を提案する。
- 参考スコア(独自算出の注目度): 24.18942374703494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Publicly available satellite imagery can be an ubiquitous, cheap, and
powerful tool for vehicle localisation when a prior sensor map is unavailable.
However, satellite images are not directly comparable to data from ground range
sensors because of their starkly different modalities. We present a learned
metric localisation method that not only handles the modality difference, but
is cheap to train, learning in a self-supervised fashion without metrically
accurate ground truth. By evaluating across multiple real-world datasets, we
demonstrate the robustness and versatility of our method for various sensor
configurations. We pay particular attention to the use of millimetre wave
radar, which, owing to its complex interaction with the scene and its immunity
to weather and lighting, makes for a compelling and valuable use case.
- Abstract(参考訳): 一般に入手可能な衛星画像は、事前のセンサーマップが利用できない場合、ユビキタスで安価で強力な車両ローカライズツールとなり得る。
しかし、衛星画像は、非常に異なるモダリティのため、地上センサーのデータと直接比較することはできない。
本稿では,モダリティ差を処理できるだけでなく,訓練コストも安価で,計量的正確な基底真理を伴わずに自己教師ありで学習する学習メトリックローカライズ手法を提案する。
複数の実世界のデータセットをまたいで評価することにより,様々なセンサ構成に対するロバスト性と汎用性を示す。
我々はミリメートル波レーダーの使用に特に注意を払っており、これはシーンとの複雑な相互作用と天候や照明に対する免疫のため、魅力的で価値のあるユースケースとなっている。
関連論文リスト
- SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using Neural Radiance Fields [10.958143040692141]
自律運転のような急速に進化する領域では、動作精度と安定性を確保するために、異なるモードの複数のセンサーを使用することが不可欠である。
各センサが提供した情報を単一の共通フレームで正確に活用するためには、これらのセンサを正確に校正することが不可欠である。
我々は、共通の表現において異なるモダリティを表現するために、ニューラルラジアンス場(Neural Radiance Fields)の能力を利用する。
論文 参考訳(メタデータ) (2023-11-27T13:25:47Z) - Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers [52.27061799824835]
GPSのない衛星画像に対して、距離センサを搭載した地上車両を位置決めする新しい枠組みを提案する。
本稿では, 畳み込み変換器を用いて, 高精度な計量レベルの局所化を行う手法を提案する。
我々は、エンドツーエンドでモデルをトレーニングし、KITTI、Pandaset、カスタムデータセットの最先端技術よりも高い精度でアプローチを実証する。
論文 参考訳(メタデータ) (2023-06-06T21:27:08Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
本稿では,セグメンテーション情報を利用してパラメータ推定を自動化する,外部カメラキャリブレーション手法を提案する。
われわれのアプローチは、カメラのポーズの粗い初期測定と、車両に搭載されたライダーセンサーによる構築に依存している。
シミュレーションおよび実世界のデータを用いて,キャリブレーション結果の低誤差測定を行う。
論文 参考訳(メタデータ) (2022-08-08T07:25:03Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNetは、センサ固有のノイズと外れ値統計を学習するディープフュージョンアプローチである。
実世界のCoRBSとScene3Dデータセットで様々なセンサーの組み合わせで実験を行う。
論文 参考訳(メタデータ) (2022-04-07T10:45:32Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
本研究では,車両のセンサ情報を未確認対象領域の航空画像に登録することにより,屋外環境におけるジオトラッキング手法を提案する。
我々は、地上および空中画像から視覚的特徴を抽出するために、計量学習環境でモデルを訓練する。
本手法は,視認不可能な正光の自己局在化のために,エンド・ツー・エンドの微分可能なモデルでオンボードカメラを利用する最初の方法である。
論文 参考訳(メタデータ) (2022-03-07T12:25:44Z) - Towards Robust Monocular Visual Odometry for Flying Robots on Planetary
Missions [49.79068659889639]
火星に着陸したばかりのIngenuityは、トラバーサビリティの影響を受けない新時代の探検の始まりとなるでしょう。
高速な光フロートラッキングを用いた高能率単分子オードメトリーアルゴリズムを提案する。
また、相対翻訳情報行列の主成分分析に基づいて、スケールドリフトの現在のリスクを推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-12T12:52:20Z) - Infrared Beacons for Robust Localization [58.720142291102135]
本稿では、赤外ビーコンと光帯域通過フィルタを備えたカメラを用いたローカライズシステムを提案する。
本システムは,照明条件にかかわらず,100m距離の個々のビーコンを確実に検出し識別することができる。
論文 参考訳(メタデータ) (2021-04-19T14:23:20Z) - Self-supervised Multisensor Change Detection [14.191073951237772]
両時間衛星画像における自己教師付き変化検出の文脈におけるマルチセンサ分析を再考する。
近年の自己教師あり学習手法の進歩は、その一部が少数の画像で機能することさえ示している。
そこで本研究では,非ラベル対象の二時間画像のみを用いたマルチセンサ変化検出手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:31:10Z) - Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V
images for Cloud Detection [1.5828697880068703]
同様の特徴を持つ光学センサーを搭載した地球観測衛星の数は、常に増え続けている。
抽出された放射能の差は精度を著しく低下させ、センサー間の知識と情報共有を損なう。
本稿では,2つの衛星センサ間の画像の統計的差異を低減し,転送学習モデルの性能を向上させるための領域適応を提案する。
論文 参考訳(メタデータ) (2020-06-10T16:16:01Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。