Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces
- URL: http://arxiv.org/abs/2006.02201v2
- Date: Sun, 30 Aug 2020 03:29:21 GMT
- Title: Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces
- Authors: Shicong Liu, Zhen Gao, Jun Zhang, Marco Di Renzo, Mohamed-Slim Alouini
- Abstract summary: This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
- Score: 99.34306447202546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave
(mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach
for improved coverage and throughput. Most existing work assumes the ideal
channel estimation, which can be challenging due to the high-dimensional
cascaded MIMO channels and passive reflecting elements. Therefore, this paper
proposes a deep denoising neural network assisted compressive channel
estimation for mmWave IRS systems to reduce the training overhead.
Specifically, we first introduce a hybrid passive/active IRS architecture,
where very few receive chains are employed to estimate the uplink user-to-IRS
channels. At the channel training stage, only a small proportion of elements
will be successively activated to sound the partial channels. Moreover, the
complete channel matrix can be reconstructed from the limited measurements
based on compressive sensing, whereby the common sparsity of angular domain
mmWave MIMO channels among different subcarriers is leveraged for improved
accuracy. Besides, a complex-valued denoising convolution neural network
(CV-DnCNN) is further proposed for enhanced performance. Simulation results
demonstrate the superiority of the proposed solution over state-of-the-art
solutions.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
This paper proposes a convolutional neural network based approach to estimate the channel for millimeter wave (mmWave) systems built on a hybrid architecture.
A coarse estimation of the channel is first made from the received signal.
Numerical illustrations show that the proposed method outperforms least square (LS) estimate, minimum mean square error (MMSE) estimate and are close to the Cramer-Rao Bound (CRB)
arXiv Detail & Related papers (2021-08-01T05:33:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Deep Learning Optimized Sparse Antenna Activation for Reconfigurable
Intelligent Surface Assisted Communication [54.72880662623178]
Reconfigurable intelligent surface (RIS) usually works in passive mode.
Due to the cascaded channel structure and the lack of signal processing ability, it is difficult for RIS to obtain the individual channel state information.
In this paper, we add signal processing units for a few antennas at RIS to partially acquire the channels.
arXiv Detail & Related papers (2020-09-03T12:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.