Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM
- URL: http://arxiv.org/abs/2109.07208v1
- Date: Wed, 15 Sep 2021 10:54:56 GMT
- Title: Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM
- Authors: Ahmed M. Badi, Taissir Y. Elganimi, Osama A. S. Alkishriwo, and Nadia
Adem
- Abstract summary: Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, deep neural network (DNN) is integrated with spatial
modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for
end-to-end data detection over Rayleigh fading channel. This proposed system
directly demodulates the received symbols, leaving the channel estimation done
only implicitly. Furthermore, an ensemble network is also proposed for this
system. Simulation results show that the proposed DNN detection scheme has a
significant advantage over classical methods when the pilot overhead and cyclic
prefix (CP) are reduced, owing to its ability to learn and adjust to
complicated channel conditions. Finally, the ensemble network is shown to
improve the generalization of the proposed scheme, while also showing a slight
improvement in its performance.
Related papers
- Joint Sparsity Pattern Learning Based Channel Estimation for Massive
MIMO-OTFS Systems [46.42375183269616]
We propose a channel estimation scheme based on joint sparsity pattern learning (JSPL) for massive multi-input multi-output (MIMO) modulation aided systems.
Both our simulation results and analysis demonstrate that the proposed channel estimation scheme achieves an improved performance over the representative state-of-the-art baseline schemes.
arXiv Detail & Related papers (2024-03-06T15:05:39Z) - An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFS and OFDM waveforms enjoy the benefits of the reuse of legacy architectures, simplicity of receiver design, and low-complexity detection.
We propose a deep neural network (DNN)-based adaptation scheme to switch between using either an OTFS or OFDM signal processing chain at the transmitter and receiver for optimal mean-squared-error (MSE) performance.
arXiv Detail & Related papers (2023-09-04T02:33:44Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
A novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels.
The transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design.
The non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities.
arXiv Detail & Related papers (2021-05-04T02:47:59Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.