Learning Kernel Tests Without Data Splitting
- URL: http://arxiv.org/abs/2006.02286v3
- Date: Mon, 19 Oct 2020 08:00:26 GMT
- Title: Learning Kernel Tests Without Data Splitting
- Authors: Jonas M. K\"ubler, Wittawat Jitkrittum, Bernhard Sch\"olkopf, Krikamol
Muandet
- Abstract summary: We propose an approach that enables learning the hyper parameters and testing on the full sample without data splitting.
Our approach's test power is empirically larger than that of the data-splitting approach, regardless of its split proportion.
- Score: 18.603394415852765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern large-scale kernel-based tests such as maximum mean discrepancy (MMD)
and kernelized Stein discrepancy (KSD) optimize kernel hyperparameters on a
held-out sample via data splitting to obtain the most powerful test statistics.
While data splitting results in a tractable null distribution, it suffers from
a reduction in test power due to smaller test sample size. Inspired by the
selective inference framework, we propose an approach that enables learning the
hyperparameters and testing on the full sample without data splitting. Our
approach can correctly calibrate the test in the presence of such dependency,
and yield a test threshold in closed form. At the same significance level, our
approach's test power is empirically larger than that of the data-splitting
approach, regardless of its split proportion.
Related papers
- Learning Deep Kernels for Non-Parametric Independence Testing [13.842061060076004]
The Hilbert-Schmidt Independence Criterion (HSIC) is a powerful tool for nonparametric detection of dependence between random variables.
We propose a scheme for selecting the kernels used in an HSIC-based independence test, based on maximizing an estimate of the test power.
arXiv Detail & Related papers (2024-09-10T22:18:07Z) - Robust Kernel Hypothesis Testing under Data Corruption [6.430258446597413]
We propose two general methods for constructing robust permutation tests under data corruption.
We prove their consistency in power under minimal conditions.
This contributes to the practical deployment of hypothesis tests for real-world applications with potential adversarial attacks.
arXiv Detail & Related papers (2024-05-30T10:23:16Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without
Data Splitting [28.59390881834003]
We propose novel statistics which maximise the power of a two-sample test based on the Maximum Mean Discrepancy (MMD)
We show how these kernels can be chosen in a data-dependent but permutation-independent way, in a well-calibrated test, avoiding data splitting.
We highlight the applicability of our MMD-FUSE test on both synthetic low-dimensional and real-world high-dimensional data, and compare its performance in terms of power against current state-of-the-art kernel tests.
arXiv Detail & Related papers (2023-06-14T23:13:03Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
We study the problems of sequential nonparametric two-sample and independence testing.
We build upon the principle of (nonparametric) testing by betting.
arXiv Detail & Related papers (2023-04-29T01:30:33Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
We show the popular MMD (maximum mean discrepancy) two-sample test to be not optimal in terms of the separation boundary measured in Hellinger distance.
We propose a modification to the MMD test based on spectral regularization and prove the proposed test to be minimax optimal with a smaller separation boundary than that achieved by the MMD test.
Our results hold for the permutation variant of the test where the test threshold is chosen elegantly through the permutation of the samples.
arXiv Detail & Related papers (2022-12-19T00:42:21Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or (ii) control weak convergence to P.
In this article we derive new sufficient and necessary conditions to ensure (i) and (ii)
For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels.
arXiv Detail & Related papers (2022-09-26T16:41:16Z) - A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn
Uncertainty Sets [12.061662346636645]
We seek the worst-case detector over distributional uncertainty sets centered around the empirical distribution from samples using Sinkhorn distance.
Compared with the Wasserstein robust test, the corresponding least favorable distributions are supported beyond the training samples, which provides a more flexible detector.
arXiv Detail & Related papers (2022-02-09T03:26:15Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually.
Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting.
arXiv Detail & Related papers (2020-04-26T23:41:33Z) - Learning Deep Kernels for Non-Parametric Two-Sample Tests [50.92621794426821]
We propose a class of kernel-based two-sample tests, which aim to determine whether two sets of samples are drawn from the same distribution.
Our tests are constructed from kernels parameterized by deep neural nets, trained to maximize test power.
arXiv Detail & Related papers (2020-02-21T03:54:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.