論文の概要: A Distributed Trust Framework for Privacy-Preserving Machine Learning
- arxiv url: http://arxiv.org/abs/2006.02456v1
- Date: Wed, 3 Jun 2020 18:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 18:51:28.909957
- Title: A Distributed Trust Framework for Privacy-Preserving Machine Learning
- Title(参考訳): プライバシ保護機械学習のための分散信頼フレームワーク
- Authors: Will Abramson, Adam James Hall, Pavlos Papadopoulos, Nikolaos
Pitropakis, William J Buchanan
- Abstract要約: 本稿では,分散エージェント間のピアツーピア信頼を促進するために使用される分散インフラストラクチャについて概説する。
Hyperledger Aries、分散識別子(DID)、検証クレデンシャル(VC)を使用した概念実証について詳述する。
- 参考スコア(独自算出の注目度): 4.282091426377838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When training a machine learning model, it is standard procedure for the
researcher to have full knowledge of both the data and model. However, this
engenders a lack of trust between data owners and data scientists. Data owners
are justifiably reluctant to relinquish control of private information to third
parties. Privacy-preserving techniques distribute computation in order to
ensure that data remains in the control of the owner while learning takes
place. However, architectures distributed amongst multiple agents introduce an
entirely new set of security and trust complications. These include data
poisoning and model theft. This paper outlines a distributed infrastructure
which is used to facilitate peer-to-peer trust between distributed agents;
collaboratively performing a privacy-preserving workflow. Our outlined
prototype sets industry gatekeepers and governance bodies as credential
issuers. Before participating in the distributed learning workflow, malicious
actors must first negotiate valid credentials. We detail a proof of concept
using Hyperledger Aries, Decentralised Identifiers (DIDs) and Verifiable
Credentials (VCs) to establish a distributed trust architecture during a
privacy-preserving machine learning experiment. Specifically, we utilise secure
and authenticated DID communication channels in order to facilitate a federated
learning workflow related to mental health care data.
- Abstract(参考訳): 機械学習モデルをトレーニングする場合、研究者がデータとモデルの両方について十分な知識を持つことは標準的な手順である。
しかし、これはデータ所有者とデータサイエンティストの信頼を欠いている。
データ所有者は、第三者に個人情報のコントロールを放棄することを控えている。
プライバシー保護技術は、学習中にデータが所有者の管理下にあることを保証するために、計算を分散する。
しかし、複数のエージェントに分散したアーキテクチャは、全く新しいセキュリティと信頼の複雑さをもたらす。
これにはデータ中毒やモデル盗難が含まれる。
本稿では,分散エージェント間のピアツーピア信頼を促進するために使用される分散インフラストラクチャについて概説する。
当社のプロトタイプでは,業界ゲートキーパーとガバナンス機関を資格発行者として設定しています。
分散学習ワークフローに参加する前に、悪意のあるアクターは、まず有効な資格情報を交渉しなければならない。
我々は、プライバシ保護機械学習実験中に分散信頼アーキテクチャを確立するために、Hyperledger Aries、分散識別子(DID)、検証クレデンシャル(VC)を使用した概念実証について詳述する。
具体的には、安全で認証されたDID通信チャネルを利用して、メンタルヘルスデータに関連するフェデレーション学習ワークフローを促進する。
関連論文リスト
- Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Blockchain-Based Federated Learning: Incentivizing Data Sharing and
Penalizing Dishonest Behavior [0.0]
本稿では,フェデレートラーニングにおけるデータ信頼を,InterPlanetary File System,ブロックチェーン,スマートコントラクトと統合する包括的フレームワークを提案する。
提案モデルは,データ共有プロセスの安全性と公平性を確保しつつ,フェデレーション学習モデルの精度向上に有効である。
研究論文では、MNISTデータセット上でCNNモデルをトレーニングした分散化したフェデレーション学習プラットフォームについても紹介する。
論文 参考訳(メタデータ) (2023-07-19T23:05:49Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings [57.45332961252628]
データ共有プロセスにおけるプライバシ保護機械学習は、極めて重要なタスクである。
本稿では、オートエンコーダによる表現学習を用いて、プライバシーを保護した組込みデータを生成する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T17:36:58Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
プライバシ保護フェデレーション学習は、分散クライアントの集団が共同で共有モデルを学ぶことを可能にする。
本稿では、このようなクライアントの共謀に対して最初に保護する、難解な分散差分プライバシーに基づく効率的なメカニズムを提案する。
我々は,プロトコルの実行速度,学習精度,および2つのデータセットのプライバシ性能を実証的に分析した。
論文 参考訳(メタデータ) (2022-02-20T19:52:53Z) - A Privacy-Preserving and Trustable Multi-agent Learning Framework [34.28936739262812]
本稿では,プライバシ保護と信頼性のある分散学習(PT-DL)を提案する。
PT-DLは、エージェントのデータに対する強力なプライバシ保護を保証するために、差分プライバシに依存する、完全に分散化されたフレームワークである。
本論文は,PT-DLが50%の衝突攻撃に対して,悪意のある信頼モデルで高い確率で回復可能であることを示す。
論文 参考訳(メタデータ) (2021-06-02T15:46:27Z) - Privacy and Trust Redefined in Federated Machine Learning [5.4475482673944455]
参加者間の信頼できるフェデレーション学習を容易にするプライバシー保護型分散型ワークフローを紹介します。
適切な当局から発行された認証クレデンシャルを保有する団体のみが、安全で認証された通信チャネルを確立することができる。
論文 参考訳(メタデータ) (2021-03-29T16:47:01Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z) - Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications [5.50791468454604]
フェデレートラーニングにより、信頼されたサーバで作業する多くのクライアントが、共有機械学習モデルを共同で学習することが可能になる。
これにより機密データを露出するリスクが軽減されるが、通信されたモデルパラメータからクライアントのプライベートデータセットに関する情報をリバースすることが可能になる。
筆者らは,非専門的な聴衆にプライバシ保存型フェデレーション学習プロトコルを提示し,実世界のクレジットカード詐欺データセットにロジスティック回帰を用いてそれを実証し,オープンソースシミュレーションプラットフォームを用いて評価する。
論文 参考訳(メタデータ) (2020-10-12T17:16:27Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
ディープラーニングは多くのコンピュータビジョンタスクで成功している。
しかし、プライバシー問題に対する意識の高まりは、特に人物の再識別(Re-ID)において、ディープラーニングに新たな課題をもたらす。
我々は,複数のプライバシ保護されたローカルモデル(ローカルクライアント)を同時に学習することにより,汎用的なグローバルモデル(中央サーバ)を構築するための,フェデレート・パーソナライゼーション(FedReID)と呼ばれる新しいパラダイムを提案する。
このクライアントサーバ共同学習プロセスは、プライバシコントロールの下で反復的に実行されるため、分散データを共有したり、収集したりすることなく、分散学習を実現することができる。
論文 参考訳(メタデータ) (2020-06-07T13:32:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。