論文の概要: Causality and Batch Reinforcement Learning: Complementary Approaches To
Planning In Unknown Domains
- arxiv url: http://arxiv.org/abs/2006.02579v1
- Date: Wed, 3 Jun 2020 23:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 17:17:57.259784
- Title: Causality and Batch Reinforcement Learning: Complementary Approaches To
Planning In Unknown Domains
- Title(参考訳): 因果性とバッチ強化学習:未知領域における計画への補完的アプローチ
- Authors: James Bannon, Brad Windsor, Wenbo Song and Tao Li
- Abstract要約: 因果推論における非政治的評価と治療効果の評価が,同じ問題に対する2つのアプローチであることを示す。
本稿では, 因果推論における非政治的評価と治療効果の評価が, 同じ問題に対する2つのアプローチであることを示す。
- 参考スコア(独自算出の注目度): 3.473038099935777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning algorithms have had tremendous successes in online
learning settings. However, these successes have relied on low-stakes
interactions between the algorithmic agent and its environment. In many
settings where RL could be of use, such as health care and autonomous driving,
the mistakes made by most online RL algorithms during early training come with
unacceptable costs. These settings require developing reinforcement learning
algorithms that can operate in the so-called batch setting, where the
algorithms must learn from set of data that is fixed, finite, and generated
from some (possibly unknown) policy. Evaluating policies different from the one
that collected the data is called off-policy evaluation, and naturally poses
counter-factual questions. In this project we show how off-policy evaluation
and the estimation of treatment effects in causal inference are two approaches
to the same problem, and compare recent progress in these two areas.
- Abstract(参考訳): 強化学習アルゴリズムはオンライン学習環境において大きな成功を収めている。
しかし、これらの成功はアルゴリズムエージェントとその環境の間の低速な相互作用に依存している。
医療や自動運転など、RLが利用できる多くの環境では、初期のトレーニングでほとんどのオンラインRLアルゴリズムが犯した誤りは受け入れがたいコストである。
これらの設定には、いわゆるバッチ設定で動作する強化学習アルゴリズムの開発が必要であり、アルゴリズムは固定的で有限で、いくつかの(おそらく不明な)ポリシーから生成される一連のデータから学ばなければならない。
収集したデータとは異なるポリシーを評価することはオフ・ポリシー・アセスメントと呼ばれ、自然に反事実的疑問を提起する。
本研究では, 因果推論における治療効果の評価とオフポリシー評価が, 同一問題に対する2つのアプローチであることを示す。
関連論文リスト
- Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z) - Bridging the Gap Between Offline and Online Reinforcement Learning
Evaluation Methodologies [6.303272140868826]
強化学習(Reinforcement Learning, RL)は、大規模な状態と行動空間を持つ環境で学習するアルゴリズムに対して、非常に有望であることを示す。
現在の深層RLアルゴリズムは、学習に膨大な量の環境相互作用を必要とする。
オフラインのRLアルゴリズムは、既存のログデータから学習プロセスをブートストラップすることでこの問題に対処しようとする。
論文 参考訳(メタデータ) (2022-12-15T20:36:10Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Constraint Sampling Reinforcement Learning: Incorporating Expertise For
Faster Learning [43.562783189118]
本稿では,人間の洞察を高速学習に組み込むための実践的アルゴリズムを提案する。
我々のアルゴリズムであるConstraint Sampling Reinforcement Learning (CSRL)は、事前のドメイン知識をRLポリシーの制約/制約として組み込む。
すべてのケースにおいて、CSRLはベースラインよりも早く良いポリシーを学ぶ。
論文 参考訳(メタデータ) (2021-12-30T22:02:42Z) - AWD3: Dynamic Reduction of the Estimation Bias [0.0]
本稿では,経験再生機構を用いた非政治連続制御アルゴリズムにおける推定バイアスを除去する手法を提案する。
OpenAIのジムの継続的な制御環境を通じて、我々のアルゴリズムは、最先端の政治政策勾配学習アルゴリズムにマッチするか、より優れています。
論文 参考訳(メタデータ) (2021-11-12T15:46:19Z) - Decentralized Multi-Agent Reinforcement Learning: An Off-Policy Method [6.261762915564555]
本稿では,分散型マルチエージェント強化学習(MARL)の問題について議論する。
我々の設定では、グローバルステート、アクション、報酬は、完全に監視可能であると仮定され、一方、ローカルポリシーは各エージェントによってプライバシとして保護されているため、他の人と共有することはできない。
政策評価と政策改善のアルゴリズムはそれぞれ、離散的かつ連続的な状態-行動空間マルコフ決定プロセス(MDP)のために設計されている。
論文 参考訳(メタデータ) (2021-10-31T09:08:46Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
環境とのオンラインインタラクションではなく、固定されたオフラインデータセットのみを使用して効果的なポリシーを学ぶバッチRLのアルゴリズムを提案する。
バッチRLにおける制限されたデータは、トレーニングデータに不十分に表現された状態/動作の値推定に固有の不確実性をもたらす。
この分散を減らすための政策制約と、過度に楽観的な見積もりを妨げる価値制約という2つの簡単な罰則によってこの問題を軽減することを提案する。
論文 参考訳(メタデータ) (2021-02-18T08:54:14Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
強化学習は、マルコフ決定プロセスにおいて期待される累積報酬を最大化するポリシーを見つけることの問題を考える。
我々は、ポリシーを更新するために上昇方向として使用する値関数の偏りのないナビゲーション勾配を計算する。
ポリシー勾配型アルゴリズムの大きな欠点は、定常性の仮定が課せられない限り、それらがエピソジックなタスクに限定されていることである。
論文 参考訳(メタデータ) (2020-10-16T15:15:42Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - DisCor: Corrective Feedback in Reinforcement Learning via Distribution
Correction [96.90215318875859]
ブートストラップに基づくQ-ラーニングアルゴリズムは必ずしも修正フィードバックの恩恵を受けないことを示す。
本稿では,この最適分布に対する近似を計算し,トレーニングに使用する遷移の重み付けに使用する新しいアルゴリズムであるDisCorを提案する。
論文 参考訳(メタデータ) (2020-03-16T16:18:52Z) - Keep Doing What Worked: Behavioral Modelling Priors for Offline
Reinforcement Learning [25.099754758455415]
オフポリシー強化学習アルゴリズムは、環境相互作用の固定されたデータセットのみが利用できる設定で適用可能であることを約束する。
標準的なオフポリシーアルゴリズムは、継続的制御のためにバッチ設定で失敗する。
論文 参考訳(メタデータ) (2020-02-19T19:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。