Unionized Data Governance in Virtual Power Plants
- URL: http://arxiv.org/abs/2006.02709v1
- Date: Thu, 4 Jun 2020 09:03:26 GMT
- Title: Unionized Data Governance in Virtual Power Plants
- Authors: Niels {\O}rb{\ae}k Chemnitz, Philippe Bonnet, Irina Shklovski,
Sebastian B\"uttrich and Laura Watts
- Abstract summary: We focus on the central role of virtual power plants in flexible electricity networks.
We propose a unionized data governance model for virtual power plants.
- Score: 7.008490462870144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flexible electricity networks continuously coordinate and optimize operations
through ICT systems. An overlay data grid conveys information about the state
of the electricity grid, as well as the status of demand and production of
electricity in households and industry. Data is thus the basis for decisions
that affect electricity costs and availability of assets on the electricity
grid. It is crucial that these decisions are formed and monitored according to
a well-defined governance model. No such data governance model exists today. In
this paper, we focus on the central role of virtual power plants in flexible
electricity networks. We define the problem of data governance in a virtual
power plant, insisting on the issues linked to the inherent asymmetry of this
system. We propose unionization as a framing device to reason about this issue.
The central contribution of this paper is thus principles for a unionized data
governance model for virtual power plants.
Related papers
- SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - A Perspective on Foundation Models for the Electric Power Grid [53.02072064670517]
Foundation models (FMs) currently dominate news headlines.
We argue that an FM learning from diverse grid data and topologies could unlock transformative capabilities.
We discuss a power grid FM concept, namely GridFM, based on graph neural networks and show how different downstream tasks benefit.
arXiv Detail & Related papers (2024-07-12T17:09:47Z) - Evaluating the Planning and Operational Resilience of Electrical
Distribution Systems with Distributed Energy Resources using Complex Network
Theory [0.0]
This paper proposes a methodology to evaluate the planning and operational resilience of power distribution systems under extreme events.
The proposed framework is developed by effectively employing the complex network theory.
arXiv Detail & Related papers (2022-08-24T13:41:37Z) - A semantic web approach to uplift decentralized household energy data [4.233200689119682]
Many databases in this field are siloed from other domains, including solely information pertaining to energy.
This may result in the loss of information (textite.g. weather) on each device's energy use.
This article tackles the data isolation issue in the field of smart energy systems by examining Semantic Web methods on top of a household energy system.
arXiv Detail & Related papers (2022-08-18T17:21:18Z) - Monitoring electrical systems data-network equipment by means ofFuzzy
and Paraconsistent Annotated Logic [0.0]
This paper develops a prototype of an expert system to monitor the status of equipment of datanetworks in electrical systems.
The expert system is developed with algorithms defined a combination of Fuzzy logic and Paraconsistent Annotated Logic.
A prototype of this expert system was installed on a virtualised server with CLP500 software.
arXiv Detail & Related papers (2021-05-17T02:33:45Z) - Power Modeling for Effective Datacenter Planning and Compute Management [53.41102502425513]
We discuss two classes of statistical power models designed and validated to be accurate, simple, interpretable and applicable to all hardware configurations and workloads.
We demonstrate that the proposed statistical modeling techniques, while simple and scalable, predict power with less than 5% Mean Absolute Percent Error (MAPE) for more than 95% diverse Power Distribution Units (more than 2000) using only 4 features.
arXiv Detail & Related papers (2021-03-22T21:22:51Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
We propose a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs)
The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality.
Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services.
arXiv Detail & Related papers (2021-03-12T13:00:01Z) - Virtual Microgrid Management via Software-defined Energy Network for
Electricity Sharing [10.13696311830345]
This article proposes an approach to build a virtual microgrid operated as a software-defined energy network (SDEN)
The proposed cyber-physical system presumes that electrical energy is shared among its members and that the energy sharing is enabled in the cyber domain by handshakes inspired by resource allocation methods utilized in computer networks, wireless communications, and peer-to-peer Internet applications (e.g., BitTorrent)
This article concludes that the proposed solution generally complies with the existing regulations but has highly disruptive potential to organize a dominantly electrified energy system in the mid- to long-term.
arXiv Detail & Related papers (2021-02-01T06:09:40Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.