Enhanced molecular spin-photon coupling at superconducting
nanoconstrictions
- URL: http://arxiv.org/abs/2006.03386v1
- Date: Fri, 5 Jun 2020 11:49:10 GMT
- Title: Enhanced molecular spin-photon coupling at superconducting
nanoconstrictions
- Authors: I. Gimeno, W. Kersten, M. C. Pallar\'es, P. Hermosilla, M. J.
Mart\'inez-P\'erez, M. D. Jenkins, A. Angerer, C. S\'anchez-Azqueta, D.
Zueco, J. Majer, A. Lostao and F. Luis
- Abstract summary: Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field.
Drops of free-radical molecules have been deposited from solution onto the circuits.
Results show the well-known collective enhancement of the coupling proportional to the square root of $N_rm eff$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We combine top-down and bottom-up nanolithography to optimize the coupling of
small molecular spin ensembles to $1.4$ GHz on-chip superconducting resonators.
Nanoscopic constrictions, fabricated with a focused ion beam at the central
transmission line, locally concentrate the microwave magnetic field. Drops of
free-radical molecules have been deposited from solution onto the circuits. For
the smallest ones, the molecules were delivered at the relevant circuit areas
by means of an atomic force microscope. The number of spins $N_{\rm eff}$
effectively coupled to each device was accurately determined combining Scanning
Electron and Atomic Force Microscopies. The collective spin-photon coupling
constant has been determined for samples with $N_{\rm eff}$ ranging between $2
\times 10^{6}$ and $10^{12}$ spins, and for temperatures down to $44$ mK. The
results show the well-known collective enhancement of the coupling proportional
to the square root of $N_{\rm eff}$. The average coupling of individual spins
is enhanced by more than four orders of magnitude (from $4$ mHz up to above
$180$ Hz) when the transmission line width is reduced from $400$ microns down
to $42$ nm, and reaches maximum values near $1$ kHz for molecules located on
the smallest nanoconstrictions. This result opens promising avenues for the
realization of magnetic spectroscopy experiments at the nanoscale and for the
development of hybrid quantum computation architectures based on molecular spin
qubits.
Related papers
- Improved Limits on an Exotic Spin- and Velocity-Dependent Interaction at
the Micrometer Scale with an Ensemble-NV-Diamond Magnetometer [7.684562006253786]
We search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale.
The result establishes new bounds for the coupling parameter $f_perp$ within the force range from 5 to 400 $rm mu$m.
arXiv Detail & Related papers (2023-08-04T11:21:41Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Experimental Constraints on Exotic Spin-Dependent Interactions by a
Magnetometer with Ensembles of Nitrogen-Vacancy Centers in Diamond [13.512039660189625]
A thin layer of NV electronic spin ensembles is utilized as the sensor.
Stringent bounds on an exotic parity-odd spin- and velocity-dependent interaction are set within the force range from 5 to 500 $mu$m.
The limit of the corresponding coupling constant, $g_SNg_Pe$, is improved by more than one order of magnitude at 30 $mu$m.
arXiv Detail & Related papers (2022-01-12T10:50:26Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Broad-band spectroscopy of a vanadyl porphyrin: a model electronuclear
spin qudit [0.0]
We show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a d = 16 qudit.
These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities.
arXiv Detail & Related papers (2021-01-27T19:12:23Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Experimental Constraint on an Exotic Parity-Odd Spin- and
Velocity-Dependent Interaction with a Single Electron Spin Quantum Sensor [6.887744934296352]
Experiment set improved constraints on the exotic spin- and velocity-dependent interaction within the force range from 1 to 330 $mu$m.
The upper limit of the coupling $g_Aeg_VN $ at $200 mu m$ is $| g_Ae g_VN| leq 8.0times10-19$, significantly improving the current laboratory limit by more than four orders of magnitude.
arXiv Detail & Related papers (2020-09-19T15:31:21Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.