Beyond Domain APIs: Task-oriented Conversational Modeling with
Unstructured Knowledge Access
- URL: http://arxiv.org/abs/2006.03533v1
- Date: Fri, 5 Jun 2020 16:12:18 GMT
- Title: Beyond Domain APIs: Task-oriented Conversational Modeling with
Unstructured Knowledge Access
- Authors: Seokhwan Kim, Mihail Eric, Karthik Gopalakrishnan, Behnam Hedayatnia,
Yang Liu, Dilek Hakkani-Tur
- Abstract summary: In this paper, we propose to expand coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources.
We define three sub-tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation.
We introduce an augmented version of MultiWOZ 2.1, which includes new out-of-API-coverage turns and responses grounded on external knowledge sources.
- Score: 18.37585134613816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most prior work on task-oriented dialogue systems are restricted to a limited
coverage of domain APIs, while users oftentimes have domain related requests
that are not covered by the APIs. In this paper, we propose to expand coverage
of task-oriented dialogue systems by incorporating external unstructured
knowledge sources. We define three sub-tasks: knowledge-seeking turn detection,
knowledge selection, and knowledge-grounded response generation, which can be
modeled individually or jointly. We introduce an augmented version of MultiWOZ
2.1, which includes new out-of-API-coverage turns and responses grounded on
external knowledge sources. We present baselines for each sub-task using both
conventional and neural approaches. Our experimental results demonstrate the
need for further research in this direction to enable more informative
conversational systems.
Related papers
- DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Large Language Models as Source Planner for Personalized
Knowledge-grounded Dialogue [72.26474540602517]
SAFARI is a novel framework for planning, understanding, and incorporating under both supervised and unsupervised settings.
We construct a personalized knowledge-grounded dialogue dataset textittextbfKnowledge textbfBehind textbfPersona(textbfKBP)
Experimental results on the KBP dataset demonstrate that the SAFARI framework can effectively produce persona-consistent and knowledge-enhanced responses.
arXiv Detail & Related papers (2023-10-13T03:38:38Z) - Dual Semantic Knowledge Composed Multimodal Dialog Systems [114.52730430047589]
We propose a novel multimodal task-oriented dialog system named MDS-S2.
It acquires the context related attribute and relation knowledge from the knowledge base.
We also devise a set of latent query variables to distill the semantic information from the composed response representation.
arXiv Detail & Related papers (2023-05-17T06:33:26Z) - Multimodal Dialog Systems with Dual Knowledge-enhanced Generative Pretrained Language Model [63.461030694700014]
We propose a novel dual knowledge-enhanced generative pretrained language model for multimodal task-oriented dialog systems (DKMD)
The proposed DKMD consists of three key components: dual knowledge selection, dual knowledge-enhanced context learning, and knowledge-enhanced response generation.
Experiments on a public dataset verify the superiority of the proposed DKMD over state-of-the-art competitors.
arXiv Detail & Related papers (2022-07-16T13:02:54Z) - OPERA: Harmonizing Task-Oriented Dialogs and Information Seeking
Experience [87.0233567695073]
Existing studies in conversational AI mostly treat task-oriented dialog (TOD) and question answering (QA) as separate tasks.
We propose a new task, Open-Book TOD (OB-TOD), which combines TOD with QA task and expand external knowledge sources.
We propose a unified model OPERA which can appropriately access explicit and implicit external knowledge to tackle the defined task.
arXiv Detail & Related papers (2022-06-24T18:21:26Z) - TegTok: Augmenting Text Generation via Task-specific and Open-world
Knowledge [83.55215993730326]
We propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework.
Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively.
arXiv Detail & Related papers (2022-03-16T10:37:59Z) - Can I Be of Further Assistance? Using Unstructured Knowledge Access to
Improve Task-oriented Conversational Modeling [39.60614611655266]
This work focuses on responding to these beyond-API-coverage user turns by incorporating external, unstructured knowledge sources.
We introduce novel data augmentation methods for the first two steps and demonstrate that the use of information extracted from dialogue context improves the knowledge selection and end-to-end performances.
arXiv Detail & Related papers (2021-06-16T23:31:42Z) - Beyond Domain APIs: Task-oriented Conversational Modeling with
Unstructured Knowledge Access Track in DSTC9 [21.181446816074704]
This challenge track aims to expand the coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources.
We define three tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation.
arXiv Detail & Related papers (2021-01-22T18:57:56Z) - Unstructured Knowledge Access in Task-oriented Dialog Modeling using
Language Inference, Knowledge Retrieval and Knowledge-Integrative Response
Generation [44.184890645068485]
Dialog systems enriched with external knowledge can handle user queries that are outside the scope of the supporting databases/APIs.
We propose three subsystems, KDEAK, KnowleDgEFactor, and Ens-GPT, which form the pipeline for a task-oriented dialog system.
Experimental results demonstrate that the proposed pipeline system outperforms the baseline and generates high-quality responses.
arXiv Detail & Related papers (2021-01-15T11:24:32Z) - Learning to Retrieve Entity-Aware Knowledge and Generate Responses with
Copy Mechanism for Task-Oriented Dialogue Systems [43.57597820119909]
Task-oriented conversational modeling with unstructured knowledge access, as track 1 of the 9th Dialogue System Technology Challenges (DSTC 9)
This challenge can be separated into three subtasks, (1) knowledge-seeking turn detection, (2) knowledge selection, and (3) knowledge-grounded response generation.
We use pre-trained language models, ELECTRA and RoBERTa, as our base encoder for different subtasks.
arXiv Detail & Related papers (2020-12-22T11:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.