Beyond Domain APIs: Task-oriented Conversational Modeling with
Unstructured Knowledge Access Track in DSTC9
- URL: http://arxiv.org/abs/2101.09276v3
- Date: Thu, 4 Feb 2021 00:08:27 GMT
- Title: Beyond Domain APIs: Task-oriented Conversational Modeling with
Unstructured Knowledge Access Track in DSTC9
- Authors: Seokhwan Kim, Mihail Eric, Behnam Hedayatnia, Karthik Gopalakrishnan,
Yang Liu, Chao-Wei Huang, Dilek Hakkani-Tur
- Abstract summary: This challenge track aims to expand the coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources.
We define three tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation.
- Score: 21.181446816074704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most prior work on task-oriented dialogue systems are restricted to a limited
coverage of domain APIs, while users oftentimes have domain related requests
that are not covered by the APIs. This challenge track aims to expand the
coverage of task-oriented dialogue systems by incorporating external
unstructured knowledge sources. We define three tasks: knowledge-seeking turn
detection, knowledge selection, and knowledge-grounded response generation. We
introduce the data sets and the neural baseline models for three tasks. The
challenge track received a total of 105 entries from 24 participating teams. In
the evaluation results, the ensemble methods with different large-scale
pretrained language models achieved high performances with improved knowledge
selection capability and better generalization into unseen data.
Related papers
- Training Zero-Shot Generalizable End-to-End Task-Oriented Dialog System Without Turn-level Dialog Annotations [2.757798192967912]
This work employs multi-task instruction fine-tuning to create more efficient and scalable task-oriented dialogue systems.
Our approach outperforms both state-of-the-art models trained on annotated data and billion-scale parameter off-the-shelf ChatGPT models.
arXiv Detail & Related papers (2024-07-21T04:52:38Z) - Query of CC: Unearthing Large Scale Domain-Specific Knowledge from
Public Corpora [104.16648246740543]
We propose an efficient data collection method based on large language models.
The method bootstraps seed information through a large language model and retrieves related data from public corpora.
It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures.
arXiv Detail & Related papers (2024-01-26T03:38:23Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Utilizing Background Knowledge for Robust Reasoning over Traffic
Situations [63.45021731775964]
We focus on a complementary research aspect of Intelligent Transportation: traffic understanding.
We scope our study to text-based methods and datasets given the abundant commonsense knowledge.
We adopt three knowledge-driven approaches for zero-shot QA over traffic situations.
arXiv Detail & Related papers (2022-12-04T09:17:24Z) - CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog
Evaluation [75.60156479374416]
CGoDial is a new challenging and comprehensive Chinese benchmark for Goal-oriented Dialog evaluation.
It contains 96,763 dialog sessions and 574,949 dialog turns totally, covering three datasets with different knowledge sources.
To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing.
arXiv Detail & Related papers (2022-11-21T16:21:41Z) - TegTok: Augmenting Text Generation via Task-specific and Open-world
Knowledge [83.55215993730326]
We propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework.
Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively.
arXiv Detail & Related papers (2022-03-16T10:37:59Z) - Can I Be of Further Assistance? Using Unstructured Knowledge Access to
Improve Task-oriented Conversational Modeling [39.60614611655266]
This work focuses on responding to these beyond-API-coverage user turns by incorporating external, unstructured knowledge sources.
We introduce novel data augmentation methods for the first two steps and demonstrate that the use of information extracted from dialogue context improves the knowledge selection and end-to-end performances.
arXiv Detail & Related papers (2021-06-16T23:31:42Z) - Unstructured Knowledge Access in Task-oriented Dialog Modeling using
Language Inference, Knowledge Retrieval and Knowledge-Integrative Response
Generation [44.184890645068485]
Dialog systems enriched with external knowledge can handle user queries that are outside the scope of the supporting databases/APIs.
We propose three subsystems, KDEAK, KnowleDgEFactor, and Ens-GPT, which form the pipeline for a task-oriented dialog system.
Experimental results demonstrate that the proposed pipeline system outperforms the baseline and generates high-quality responses.
arXiv Detail & Related papers (2021-01-15T11:24:32Z) - Learning to Retrieve Entity-Aware Knowledge and Generate Responses with
Copy Mechanism for Task-Oriented Dialogue Systems [43.57597820119909]
Task-oriented conversational modeling with unstructured knowledge access, as track 1 of the 9th Dialogue System Technology Challenges (DSTC 9)
This challenge can be separated into three subtasks, (1) knowledge-seeking turn detection, (2) knowledge selection, and (3) knowledge-grounded response generation.
We use pre-trained language models, ELECTRA and RoBERTa, as our base encoder for different subtasks.
arXiv Detail & Related papers (2020-12-22T11:36:37Z) - Beyond Domain APIs: Task-oriented Conversational Modeling with
Unstructured Knowledge Access [18.37585134613816]
In this paper, we propose to expand coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources.
We define three sub-tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation.
We introduce an augmented version of MultiWOZ 2.1, which includes new out-of-API-coverage turns and responses grounded on external knowledge sources.
arXiv Detail & Related papers (2020-06-05T16:12:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.