High-level Modeling of Manufacturing Faults in Deep Neural Network
Accelerators
- URL: http://arxiv.org/abs/2006.03616v2
- Date: Mon, 26 Oct 2020 15:31:56 GMT
- Title: High-level Modeling of Manufacturing Faults in Deep Neural Network
Accelerators
- Authors: Shamik Kundu, Ahmet Soyyi\u{g}it, Khaza Anuarul Hoque and Kanad Basu
- Abstract summary: Google's Unit Processing (TPU) is a neural network accelerator that uses systolic array-based matrix multiplication hardware for computation in its crux.
Manufacturing faults at any state element of the matrix multiplication unit can cause unexpected errors in these inference networks.
We propose a formal model of permanent faults and their propagation in a TPU using the Discrete-Time Markov Chain (DTMC) formalism.
- Score: 2.6258269516366557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of data-driven real-time applications requires the implementation
of Deep Neural Networks (DNNs) on Machine Learning accelerators. Google's
Tensor Processing Unit (TPU) is one such neural network accelerator that uses
systolic array-based matrix multiplication hardware for computation in its
crux. Manufacturing faults at any state element of the matrix multiplication
unit can cause unexpected errors in these inference networks. In this paper, we
propose a formal model of permanent faults and their propagation in a TPU using
the Discrete-Time Markov Chain (DTMC) formalism. The proposed model is analyzed
using the probabilistic model checking technique to reason about the likelihood
of faulty outputs. The obtained quantitative results show that the
classification accuracy is sensitive to the type of permanent faults as well as
their location, bit position and the number of layers in the neural network.
The conclusions from our theoretical model have been validated using
experiments on a digit recognition-based DNN.
Related papers
- Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
Quantum machine learning, focusing on quantum neural networks (QNNs), remains a vastly uncharted field of study.
We introduce a bona fide QNN model, which seamlessly aligns with the versatility of a traditional FFNN in terms of its adaptable intermediate layers and nodes.
We test our proposed model on various benchmarking datasets such as the diagnostic breast cancer (Wisconsin) and credit card fraud detection datasets.
arXiv Detail & Related papers (2024-02-01T15:13:26Z) - Evaluation of machine learning architectures on the quantification of
epistemic and aleatoric uncertainties in complex dynamical systems [0.0]
Uncertainty Quantification (UQ) is a self assessed estimate of the model error.
We examine several machine learning techniques, including both Gaussian processes and a family UQ-augmented neural networks.
We evaluate UQ accuracy (distinct from model accuracy) using two metrics: the distribution of normalized residuals on validation data, and the distribution of estimated uncertainties.
arXiv Detail & Related papers (2023-06-27T02:35:25Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
We exploit recent results in quantifying the robustness of neural networks to construct and tune a model-based anomaly detector.
In tuning, we specifically provide upper bounds on the rate of false alarms expected under normal operation.
arXiv Detail & Related papers (2021-03-22T19:23:08Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.