An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design
- URL: http://arxiv.org/abs/2210.15765v1
- Date: Thu, 27 Oct 2022 20:53:39 GMT
- Title: An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design
- Authors: Mingjie Liu, Haoyu Yang, Zongyi Li, Kumara Sastry, Saumyadip
Mukhopadhyay, Selim Dogru, Anima Anandkumar, David Z. Pan, Brucek Khailany,
Haoxing Ren
- Abstract summary: Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
- Score: 55.62660894625669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lithography modeling is a crucial problem in chip design to ensure a chip
design mask is manufacturable. It requires rigorous simulations of optical and
chemical models that are computationally expensive. Recent developments in
machine learning have provided alternative solutions in replacing the
time-consuming lithography simulations with deep neural networks. However, the
considerable accuracy drop still impedes its industrial adoption. Most
importantly, the quality and quantity of the training dataset directly affect
the model performance. To tackle this problem, we propose a litho-aware data
augmentation (LADA) framework to resolve the dilemma of limited data and
improve the machine learning model performance. First, we pretrain the neural
networks for lithography modeling and a gradient-friendly StyleGAN2 generator.
We then perform adversarial active sampling to generate informative and
synthetic in-distribution mask designs. These synthetic mask images will
augment the original limited training dataset used to finetune the lithography
model for improved performance. Experimental results demonstrate that LADA can
successfully exploits the neural network capacity by narrowing down the
performance gap between the training and testing data instances.
Related papers
- Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Enhancing ML model accuracy for Digital VLSI circuits using diffusion
models: A study on synthetic data generation [0.5363664265121232]
This study investigates the use of diffusion models in generating artificial data for electronic circuits.
We utilize simulations in the HSPICE design environment with 22nm CMOS technology nodes to obtain representative real training data for our proposed diffusion model.
arXiv Detail & Related papers (2023-10-15T14:20:09Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Qualitative Data Augmentation for Performance Prediction in VLSI
circuits [2.1227526213206542]
This work proposes generating and evaluating artificial data using generative adversarial networks (GANs) for circuit data.
The training data is obtained by various simulations in the Cadence Virtuoso, HSPICE, and Microcap design environment with TSMC 180nm and 22nm CMOS technology nodes.
The experimental results show that the proposed artificial data generation significantly improves ML models and reduces the percentage error by more than 50% of the original percentage error.
arXiv Detail & Related papers (2023-02-15T10:14:12Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Large Scale Mask Optimization Via Convolutional Fourier Neural Operator
and Litho-Guided Self Training [54.16367467777526]
We present a Convolutional Neural Operator (CFCF) that can efficiently learn mask tasks.
For the first time, our machine learning-based framework outperforms state-of-the-art numerical mask dataset.
arXiv Detail & Related papers (2022-07-08T16:39:31Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - Generic Lithography Modeling with Dual-band Optics-Inspired Neural
Networks [52.200624127512874]
We introduce a dual-band optics-inspired neural network design that considers the optical physics underlying lithography.
Our approach yields the first published via/metal layer contour simulation at 1nm2/pixel resolution with any tile size.
We also achieve 85X simulation speedup over traditional lithography simulator with 1% accuracy loss.
arXiv Detail & Related papers (2022-03-12T08:08:50Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.