SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images
- URL: http://arxiv.org/abs/2006.03630v1
- Date: Fri, 5 Jun 2020 18:53:36 GMT
- Title: SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images
- Authors: Xinxin Zuo and Sen Wang and Jiangbin Zheng and Weiwei Yu and Minglun
Gong and Ruigang Yang and Li Cheng
- Abstract summary: We propose a novel approach to reconstruct 3D human body shapes based on a sparse set of RGBD frames.
The main challenge is how to robustly fuse these sparse frames into a canonical 3D model.
Our framework is flexible, with potential applications going beyond shape reconstruction.
- Score: 49.52782544649703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel approach to reconstruct 3D human body
shapes based on a sparse set of RGBD frames using a single RGBD camera. We
specifically focus on the realistic settings where human subjects move freely
during the capture. The main challenge is how to robustly fuse these sparse
frames into a canonical 3D model, under pose changes and surface occlusions.
This is addressed by our new framework consisting of the following steps.
First, based on a generative human template, for every two frames having
sufficient overlap, an initial pairwise alignment is performed; It is followed
by a global non-rigid registration procedure, in which partial results from
RGBD frames are collected into a unified 3D shape, under the guidance of
correspondences from the pairwise alignment; Finally, the texture map of the
reconstructed human model is optimized to deliver a clear and spatially
consistent texture. Empirical evaluations on synthetic and real datasets
demonstrate both quantitatively and qualitatively the superior performance of
our framework in reconstructing complete 3D human models with high fidelity. It
is worth noting that our framework is flexible, with potential applications
going beyond shape reconstruction. As an example, we showcase its use in
reshaping and reposing to a new avatar.
Related papers
- GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Object-Centric Domain Randomization for 3D Shape Reconstruction in the Wild [22.82439286651921]
One of the biggest challenges in single-view 3D shape reconstruction in the wild is the scarcity of 3D shape, 2D image>-paired data from real-world environments.
Inspired by remarkable achievements via domain randomization, we propose ObjectDR which synthesizes such paired data via a random simulation of visual variations in object appearances and backgrounds.
arXiv Detail & Related papers (2024-03-21T16:40:10Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - CrossHuman: Learning Cross-Guidance from Multi-Frame Images for Human
Reconstruction [6.450579406495884]
CrossHuman is a novel method that learns cross-guidance from parametric human model and multi-frame RGB images.
We design a reconstruction pipeline combined with tracking-based methods and tracking-free methods.
Compared with previous works, our CrossHuman enables high-fidelity geometry details and texture in both visible and invisible regions.
arXiv Detail & Related papers (2022-07-20T08:25:20Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
We introduce an approach that accurately reconstructs 3D human poses and detailed 3D full-body geometric models from single images in realtime.
Key idea of our approach is a novel end-to-end multi-task deep learning framework that uses single images to predict five outputs simultaneously.
We show the system advances the frontier of 3D human body and pose reconstruction from single images by quantitative evaluations and comparisons with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-22T04:26:11Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.