HORT: Monocular Hand-held Objects Reconstruction with Transformers
- URL: http://arxiv.org/abs/2503.21313v1
- Date: Thu, 27 Mar 2025 09:45:09 GMT
- Title: HORT: Monocular Hand-held Objects Reconstruction with Transformers
- Authors: Zerui Chen, Rolandos Alexandros Potamias, Shizhe Chen, Cordelia Schmid,
- Abstract summary: Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.<n>We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.<n>Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
- Score: 61.36376511119355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing hand-held objects in 3D from monocular images remains a significant challenge in computer vision. Most existing approaches rely on implicit 3D representations, which produce overly smooth reconstructions and are time-consuming to generate explicit 3D shapes. While more recent methods directly reconstruct point clouds with diffusion models, the multi-step denoising makes high-resolution reconstruction inefficient. To address these limitations, we propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects. Our method follows a coarse-to-fine strategy, first generating a sparse point cloud from the image and progressively refining it into a dense representation using pixel-aligned image features. To enhance reconstruction accuracy, we integrate image features with 3D hand geometry to jointly predict the object point cloud and its pose relative to the hand. Our model is trained end-to-end for optimal performance. Experimental results on both synthetic and real datasets demonstrate that our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
Related papers
- Hyperbolic-constraint Point Cloud Reconstruction from Single RGB-D Images [19.23499128175523]
We introduce hyperbolic space to 3D point cloud reconstruction, enabling the model to represent and understand complex hierarchical structures in point clouds with low distortion.<n>Our model outperforms most existing models, and ablation studies demonstrate the significance of our model and its components.
arXiv Detail & Related papers (2024-12-12T08:27:39Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
We present ComboVerse, a 3D generation framework that produces high-quality 3D assets with complex compositions by learning to combine multiple models.
Our proposed framework emphasizes spatial alignment of objects, compared with standard score distillation sampling.
arXiv Detail & Related papers (2024-03-19T03:39:43Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Flow-based GAN for 3D Point Cloud Generation from a Single Image [16.04710129379503]
We introduce a hybrid explicit-implicit generative modeling scheme, which inherits the flow-based explicit generative models for sampling point clouds with arbitrary resolutions.
We evaluate on the large-scale synthetic dataset ShapeNet, with the experimental results demonstrating the superior performance of the proposed method.
arXiv Detail & Related papers (2022-10-08T17:58:20Z) - Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving
Objects [115.71874459429381]
We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image.
While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object motion.
arXiv Detail & Related papers (2021-06-16T13:18:08Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.