論文の概要: UCLID-Net: Single View Reconstruction in Object Space
- arxiv url: http://arxiv.org/abs/2006.03817v2
- Date: Tue, 16 Jun 2020 12:11:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 21:52:09.439229
- Title: UCLID-Net: Single View Reconstruction in Object Space
- Title(参考訳): UCLID-Net:オブジェクト空間における単一ビュー再構成
- Authors: Benoit Guillard, Edoardo Remelli, Pascal Fua
- Abstract要約: 三次元潜在空間を保存する幾何学的空間の構築は,オブジェクト座標空間における大域的形状規則性と局所的推論を同時に学習する上で有効であることを示す。
ベンチマーク目的でよく使用されるShapeNet合成画像と、我々のアプローチが最先端の画像より優れている実世界の画像の両方を実証する。
- 参考スコア(独自算出の注目度): 60.046383053211215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most state-of-the-art deep geometric learning single-view reconstruction
approaches rely on encoder-decoder architectures that output either shape
parametrizations or implicit representations. However, these representations
rarely preserve the Euclidean structure of the 3D space objects exist in. In
this paper, we show that building a geometry preserving 3-dimensional latent
space helps the network concurrently learn global shape regularities and local
reasoning in the object coordinate space and, as a result, boosts performance.
We demonstrate both on ShapeNet synthetic images, which are often used for
benchmarking purposes, and on real-world images that our approach outperforms
state-of-the-art ones. Furthermore, the single-view pipeline naturally extends
to multi-view reconstruction, which we also show.
- Abstract(参考訳): 最先端のディープラーニングシングルビュー再構成アプローチの多くは、形状パラメトリゼーションまたは暗黙の表現を出力するエンコーダデコーダアーキテクチャに依存している。
しかし、これらの表現は3次元空間オブジェクトのユークリッド構造をほとんど保存しない。
本稿では,3次元潜在空間を保存した幾何学的空間を構築することで,オブジェクト座標空間におけるグローバルな形状規則性と局所的推論を同時に学習し,その結果,性能が向上することを示す。
ベンチマーク目的でよく使用されるShapeNet合成画像と、我々のアプローチが最先端の画像より優れている実世界の画像の両方を実証する。
さらに、シングルビューパイプラインは自然にマルチビュー再構築にも拡張されます。
関連論文リスト
- Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123は、一視点画像から部分認識された3D再構成のための新しいフレームワークである。
ニューラルレンダリングフレームワークにコントラスト学習を導入し、部分認識機能空間を学習する。
クラスタリングに基づくアルゴリズムも開発され、再構成されたモデルから3次元部分分割結果を自動的に導出する。
論文 参考訳(メタデータ) (2024-05-27T07:10:21Z) - LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
Listは、局所的およびグローバルな画像特徴を活用して、単一の画像から3Dオブジェクトの幾何学的および位相的構造を再構築する、新しいニューラルネットワークである。
合成画像と実世界の画像から3Dオブジェクトを再構成する際のモデルの有用性を示す。
論文 参考訳(メタデータ) (2023-07-23T01:01:27Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - Geodesic-HOF: 3D Reconstruction Without Cutting Corners [42.4960665928525]
シングルビュー3Dオブジェクト再構成は、コンピュータビジョンの難しい根本的な問題である。
標準サンプリング領域から高次元空間への画像条件付き写像関数を学習する。
この学習された測地線埋め込み空間は、教師なしオブジェクト分解のようなアプリケーションに有用な情報を提供する。
論文 参考訳(メタデータ) (2020-06-14T18:59:06Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
プリミティブの集合として3次元オブジェクトの幾何を共同で復元できる新しい定式化を提案する。
我々のモデルは、プリミティブのバイナリツリーの形で、様々なオブジェクトの高レベルな構造的分解を復元する。
ShapeNet と D-FAUST のデータセットを用いた実験により,部品の組織化を考慮すれば3次元形状の推論が容易になることが示された。
論文 参考訳(メタデータ) (2020-04-02T17:58:05Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - STD-Net: Structure-preserving and Topology-adaptive Deformation Network
for 3D Reconstruction from a Single Image [27.885717341244014]
単一のビューイメージからの3D再構成は、コンピュータビジョンにおける長年の進歩である。
本稿では,メッシュ表現を用いた3次元モデル再構築のためのSTD-Netを提案する。
ShapeNetの画像による実験結果から, 提案したSTD-Netは, 3Dオブジェクトを再構成する他の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-03-07T11:02:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。