論文の概要: Neural Lyapunov Redesign
- arxiv url: http://arxiv.org/abs/2006.03947v2
- Date: Mon, 23 Nov 2020 04:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 21:32:49.985393
- Title: Neural Lyapunov Redesign
- Title(参考訳): ニューラルリアプノフの再設計
- Authors: Arash Mehrjou, Mohammad Ghavamzadeh, Bernhard Sch\"olkopf
- Abstract要約: 学習コントローラは、エージェントや環境に害を与えないように、何らかの安全の概念を保証しなければなりません。
リアプノフ関数は非線形力学系の安定性を評価する効果的なツールである。
本稿では,リアプノフ関数の推定と,安定領域を徐々に拡大する制御器の導出を交互に行う2プレーヤ協調アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 36.2939747271983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning controllers merely based on a performance metric has been proven
effective in many physical and non-physical tasks in both control theory and
reinforcement learning. However, in practice, the controller must guarantee
some notion of safety to ensure that it does not harm either the agent or the
environment. Stability is a crucial notion of safety, whose violation can
certainly cause unsafe behaviors. Lyapunov functions are effective tools to
assess stability in nonlinear dynamical systems. In this paper, we combine an
improving Lyapunov function with automatic controller synthesis in an iterative
fashion to obtain control policies with large safe regions. We propose a
two-player collaborative algorithm that alternates between estimating a
Lyapunov function and deriving a controller that gradually enlarges the
stability region of the closed-loop system. We provide theoretical results on
the class of systems that can be treated with the proposed algorithm and
empirically evaluate the effectiveness of our method using an exemplary
dynamical system.
- Abstract(参考訳): 単にパフォーマンスメトリックに基づく学習コントローラは、制御理論と強化学習の両方において、多くの物理および非物理タスクにおいて有効であることが証明されている。
しかし、実際には、コントローラは、エージェントと環境の両方に害を及ぼさないよう、何らかの安全概念を保証しなければならない。
安定性は安全の重要な概念であり、その侵害は確実に安全でない行動を引き起こす。
リャプノフ関数は非線形力学系の安定性を評価する効果的なツールである。
本稿では,改良されたリアプノフ関数と自動制御器合成を反復的に組み合わせ,大規模な安全領域の制御ポリシを得る。
本稿では,リアプノフ関数の推定と,閉ループシステムの安定性領域を徐々に拡大する制御器の導出を交互に行う2プレーヤ協調アルゴリズムを提案する。
提案するアルゴリズムで処理可能なシステムのクラスについて理論的結果を示し,本手法の有効性を例示力学系を用いて実証的に評価する。
関連論文リスト
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Sample-efficient Safe Learning for Online Nonlinear Control with Control
Barrier Functions [35.9713619595494]
強化学習と連続非線形制御は、複雑なシーケンシャルな意思決定タスクの複数の領域にうまく展開されている。
学習過程の探索特性とモデル不確実性の存在を考えると、それらを安全クリティカルな制御タスクに適用することは困難である。
本稿では,オンライン制御タスクを対象とした,効率のよいエピソード型安全な学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-29T00:54:35Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
形式的安定性を保証するモデルに基づく強化学習フレームワークを提案する。
提案手法は,特徴表現を用いて信頼区間までシステムダイナミクスを学習する。
我々は、KCRLが、基礎となる未知のシステムとの有限数の相互作用において安定化ポリシーを学ぶことが保証されていることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:27:04Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Reinforcement Learning Control of Constrained Dynamic Systems with
Uniformly Ultimate Boundedness Stability Guarantee [12.368097742148128]
強化学習(RL)は複雑な非線形制御問題に対して有望である。
データベースの学習アプローチは、安定性を保証していないことで悪名高い。
本稿では,古典的なリャプノフ法を用いて,データのみに基づいて一様極大境界性安定性(UUB)を解析する。
論文 参考訳(メタデータ) (2020-11-13T12:41:56Z) - Actor-Critic Reinforcement Learning for Control with Stability Guarantee [9.400585561458712]
強化学習(RL)と深層学習の統合は、様々なロボット制御タスクにおいて印象的なパフォーマンスを達成した。
しかし、データのみを用いることで、モデルフリーなRLでは安定性は保証されない。
本稿では,古典的なリアプノフ法を制御理論に適用することにより,閉ループ安定性を保証できるアクタクリティカルな制御用RLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:14:30Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
多くの実世界の産業アプリケーションでは、例えば人間の操作者による実行など、既存の制御戦略を持つことが典型的である。
この研究の目的は、安全と安定性を維持する新しいコントローラを学習することで、この未知の、安全だが、最適でないポリシーを改善することである。
提案アルゴリズムは、端末コストを学習し、安定性基準に従ってMPCパラメータを更新する。
論文 参考訳(メタデータ) (2020-02-21T16:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。