Consistency Regularization for Certified Robustness of Smoothed
Classifiers
- URL: http://arxiv.org/abs/2006.04062v4
- Date: Fri, 8 Jan 2021 14:39:29 GMT
- Title: Consistency Regularization for Certified Robustness of Smoothed
Classifiers
- Authors: Jongheon Jeong, Jinwoo Shin
- Abstract summary: A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
- Score: 89.72878906950208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent technique of randomized smoothing has shown that the worst-case
(adversarial) $\ell_2$-robustness can be transformed into the average-case
Gaussian-robustness by "smoothing" a classifier, i.e., by considering the
averaged prediction over Gaussian noise. In this paradigm, one should rethink
the notion of adversarial robustness in terms of generalization ability of a
classifier under noisy observations. We found that the trade-off between
accuracy and certified robustness of smoothed classifiers can be greatly
controlled by simply regularizing the prediction consistency over noise. This
relationship allows us to design a robust training objective without
approximating a non-existing smoothed classifier, e.g., via soft smoothing. Our
experiments under various deep neural network architectures and datasets show
that the "certified" $\ell_2$-robustness can be dramatically improved with the
proposed regularization, even achieving better or comparable results to the
state-of-the-art approaches with significantly less training costs and
hyperparameters.
Related papers
- Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale.
We present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing.
Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level.
arXiv Detail & Related papers (2023-10-25T17:11:21Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
arXiv Detail & Related papers (2023-09-28T22:41:47Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
We propose a training scheme, coined SmoothMix, to control the robustness of smoothed classifiers via self-mixup.
The proposed procedure effectively identifies over-confident, near off-class samples as a cause of limited robustness.
Our experimental results demonstrate that the proposed method can significantly improve the certified $ell$-robustness of smoothed classifiers.
arXiv Detail & Related papers (2021-11-17T18:20:59Z) - Adversarially Robust Classifier with Covariate Shift Adaptation [25.39995678746662]
Existing adversarially trained models typically perform inference on test examples independently from each other.
We show that simple adaptive batch normalization (BN) technique can significantly improve the robustness of these models for any random perturbations.
We further demonstrate that adaptive BN technique significantly improves robustness against common corruptions, while often enhancing performance against adversarial attacks.
arXiv Detail & Related papers (2021-02-09T19:51:56Z) - Black-Box Certification with Randomized Smoothing: A Functional
Optimization Based Framework [60.981406394238434]
We propose a general framework of adversarial certification with non-Gaussian noise and for more general types of attacks.
Our proposed methods achieve better certification results than previous works and provide a new perspective on randomized smoothing certification.
arXiv Detail & Related papers (2020-02-21T07:52:47Z) - Regularized Training and Tight Certification for Randomized Smoothed
Classifier with Provable Robustness [15.38718018477333]
We derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart.
We also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability.
arXiv Detail & Related papers (2020-02-17T20:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.