The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing
- URL: http://arxiv.org/abs/2309.16883v4
- Date: Mon, 18 Mar 2024 08:43:46 GMT
- Title: The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing
- Authors: Blaise Delattre, Alexandre Araujo, Quentin Barthélemy, Alexandre Allauzen,
- Abstract summary: Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
- Score: 85.85160896547698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks. The certified radius in this context is a crucial indicator of the robustness of models. However how to design an efficient classifier with an associated certified radius? Randomized smoothing provides a promising framework by relying on noise injection into the inputs to obtain a smoothed and robust classifier. In this paper, we first show that the variance introduced by the Monte-Carlo sampling in the randomized smoothing procedure estimate closely interacts with two other important properties of the classifier, \textit{i.e.} its Lipschitz constant and margin. More precisely, our work emphasizes the dual impact of the Lipschitz constant of the base classifier, on both the smoothed classifier and the empirical variance. To increase the certified robust radius, we introduce a different way to convert logits to probability vectors for the base classifier to leverage the variance-margin trade-off. We leverage the use of Bernstein's concentration inequality along with enhanced Lipschitz bounds for randomized smoothing. Experimental results show a significant improvement in certified accuracy compared to current state-of-the-art methods. Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
Related papers
- Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Understanding Noise-Augmented Training for Randomized Smoothing [14.061680807550722]
Randomized smoothing is a technique for providing provable robustness guarantees against adversarial attacks.
We show that, without making stronger distributional assumptions, no benefit can be expected from predictors trained with noise-augmentation.
Our analysis has direct implications to the practical deployment of randomized smoothing.
arXiv Detail & Related papers (2023-05-08T14:46:34Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
We propose a training scheme, coined SmoothMix, to control the robustness of smoothed classifiers via self-mixup.
The proposed procedure effectively identifies over-confident, near off-class samples as a cause of limited robustness.
Our experimental results demonstrate that the proposed method can significantly improve the certified $ell$-robustness of smoothed classifiers.
arXiv Detail & Related papers (2021-11-17T18:20:59Z) - Certifying Confidence via Randomized Smoothing [151.67113334248464]
Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems.
Most smoothing methods do not give us any information about the confidence with which the underlying classifier makes a prediction.
We propose a method to generate certified radii for the prediction confidence of the smoothed classifier.
arXiv Detail & Related papers (2020-09-17T04:37:26Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.