論文の概要: Unsupervised Learning for Subterranean Junction Recognition Based on 2D
Point Cloud
- arxiv url: http://arxiv.org/abs/2006.04225v1
- Date: Sun, 7 Jun 2020 18:36:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 08:30:52.755539
- Title: Unsupervised Learning for Subterranean Junction Recognition Based on 2D
Point Cloud
- Title(参考訳): 2次元点雲に基づく地下接合認識のための教師なし学習
- Authors: Sina Sharif Mansouri, Farhad Pourkamali-Anaraki, Miguel Castano
Arranz, Ali-akbar Agha-mohammadi, Joel Burdick, and George Nikolakopoulos
- Abstract要約: 本稿では, 獲得した2次元点雲に基づいて地下環境におけるトンネル接合数を検出するための, 教師なし学習フレームワークを提案する。
我々は,複数の現実的なシミュレーションや地下環境の実際の飛行から収集した複数のデータセットを用いて,開発フレームワークを検証した。
- 参考スコア(独自算出の注目度): 3.8532191223676517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article proposes a novel unsupervised learning framework for detecting
the number of tunnel junctions in subterranean environments based on acquired
2D point clouds. The implementation of the framework provides valuable
information for high level mission planners to navigate an aerial platform in
unknown areas or robot homing missions. The framework utilizes spectral
clustering, which is capable of uncovering hidden structures from connected
data points lying on non-linear manifolds. The spectral clustering algorithm
computes a spectral embedding of the original 2D point cloud by utilizing the
eigen decomposition of a matrix that is derived from the pairwise similarities
of these points. We validate the developed framework using multiple data-sets,
collected from multiple realistic simulations, as well as from real flights in
underground environments, demonstrating the performance and merits of the
proposed methodology.
- Abstract(参考訳): 本稿では,獲得した2次元点雲に基づく地下環境におけるトンネル接合数を検出するための教師なし学習フレームワークを提案する。
このフレームワークの実装は、未知の領域の飛行プラットフォームやロボットホーミングミッションをナビゲートするために、高レベルのミッションプランナーに貴重な情報を提供する。
このフレームワークはスペクトルクラスタリングを利用して、非線型多様体上の連結データポイントから隠れた構造を発見できる。
スペクトルクラスタリングアルゴリズムは、これらの点の対の類似性から導かれる行列の固有分解を利用して、元の2次元点雲のスペクトル埋め込みを計算する。
提案手法の性能とメリットを実証し,複数の現実的なシミュレーションから収集した複数のデータセットと,地下環境における実飛行から収集したフレームワークを検証した。
関連論文リスト
- Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - DF4LCZ: A SAM-Empowered Data Fusion Framework for Scene-Level Local Climate Zone Classification [2.088672652658465]
LCZ分類のための新しいDual-stream Fusionフレームワーク(DF4LCZ)を提案する。
このフレームワークには、Segment Anything Model (SAM) によって強化された Graph Convolutional Network (GCN) モジュールが含まれており、Googleイメージからの機能抽出を強化する。
提案するDF4LCZの有効性を検証するため,LCZ分類に特化して設計されたマルチソースリモートセンシング画像データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-03-14T13:15:46Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
異常き裂領域検出は典型的なバイナリセマンティックセグメンテーションタスクであり、アルゴリズムによって舗装面画像上のひび割れを表す画素を自動的に検出することを目的としている。
既存のディープラーニングベースの手法は、特定の公共舗装のデータセットで優れた結果を得たが、不均衡なデータセットでは性能が劇的に低下する。
画素レベルの異常き裂領域検出タスクに対して,条件付き生成逆ネットワーク(cGAN)に基づくディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-03T19:24:40Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
3Dセグメンテーションラベルの欠如は、効率的な点雲セグメンテーションの主な障害の1つである。
本稿では,2D のみを監督する点群における大規模セマンティックシーンセグメンテーションのための,新しいディープグラフ畳み込みネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-26T23:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。