Multi-Task Reinforcement Learning based Mobile Manipulation Control for
Dynamic Object Tracking and Grasping
- URL: http://arxiv.org/abs/2006.04271v1
- Date: Sun, 7 Jun 2020 21:18:36 GMT
- Title: Multi-Task Reinforcement Learning based Mobile Manipulation Control for
Dynamic Object Tracking and Grasping
- Authors: Cong Wang, Qifeng Zhang, Qiyan Tian, Shuo Li, Xiaohui Wang, David
Lane, Yvan Petillot, Ziyang Hong, Sen Wang
- Abstract summary: A multi-task reinforcement learning-based mobile manipulation control framework is proposed to achieve general dynamic object tracking and grasping.
Experiments show that our policy trained can adapt to unseen random dynamic trajectories with about 0.1m tracking error and 75% grasping success rate.
- Score: 17.2022039806473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agile control of mobile manipulator is challenging because of the high
complexity coupled by the robotic system and the unstructured working
environment. Tracking and grasping a dynamic object with a random trajectory is
even harder. In this paper, a multi-task reinforcement learning-based mobile
manipulation control framework is proposed to achieve general dynamic object
tracking and grasping. Several basic types of dynamic trajectories are chosen
as the task training set. To improve the policy generalization in practice,
random noise and dynamics randomization are introduced during the training
process. Extensive experiments show that our policy trained can adapt to unseen
random dynamic trajectories with about 0.1m tracking error and 75\% grasping
success rate of dynamic objects. The trained policy can also be successfully
deployed on a real mobile manipulator.
Related papers
- Guided Reinforcement Learning for Robust Multi-Contact Loco-Manipulation [12.377289165111028]
Reinforcement learning (RL) often necessitates a meticulous Markov Decision Process (MDP) design tailored to each task.
This work proposes a systematic approach to behavior synthesis and control for multi-contact loco-manipulation tasks.
We define a task-independent MDP to train RL policies using only a single demonstration per task generated from a model-based trajectory.
arXiv Detail & Related papers (2024-10-17T17:46:27Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects.
Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, and (iv) a grasping control policy trained to perform soft catching motions.
We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight
arXiv Detail & Related papers (2023-12-21T16:20:12Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Learning Pneumatic Non-Prehensile Manipulation with a Mobile Blower [30.032847855193864]
blowing controller must continually adapt to unexpected changes from its actions.
We introduce a multi-frequency version of the spatial action maps framework.
This allows for efficient learning of vision-based policies that effectively combine high-level planning and low-level closed-loop control.
arXiv Detail & Related papers (2022-04-05T17:55:58Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
We propose a fully automated approach to selecting motion for a character to track in a given scenario.
High-level task objectives that the character should perform can be specified by relatively simple reward functions.
Low-level style of the character's behaviors can be specified by a dataset of unstructured motion clips.
Our system produces high-quality motions comparable to those achieved by state-of-the-art tracking-based techniques.
arXiv Detail & Related papers (2021-04-05T22:43:14Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - Learning Reactive and Predictive Differentiable Controllers for
Switching Linear Dynamical Models [7.653542219337937]
We present a framework for learning composite dynamical behaviors from expert demonstrations.
We learn a switching linear dynamical model with contacts encoded in switching conditions as a close approximation of our system dynamics.
We then use discrete-time LQR as the differentiable policy class for data-efficient learning of control to develop a control strategy.
arXiv Detail & Related papers (2021-03-26T04:40:24Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - TAMPC: A Controller for Escaping Traps in Novel Environments [0.0]
We learn dynamics for a system without traps from a randomly collected training set.
When unexpected traps arise in execution, we must find a way to adapt our dynamics and control strategy.
Our approach, Trap-Aware Model Predictive Control (TAMPC), is a two-level hierarchical control algorithm.
arXiv Detail & Related papers (2020-10-23T16:33:15Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.