CAIMAN: Causal Action Influence Detection for Sample-efficient Loco-manipulation
- URL: http://arxiv.org/abs/2502.00835v2
- Date: Mon, 28 Apr 2025 10:57:51 GMT
- Title: CAIMAN: Causal Action Influence Detection for Sample-efficient Loco-manipulation
- Authors: Yuanchen Yuan, Jin Cheng, Núria Armengol Urpí, Stelian Coros,
- Abstract summary: We present CAIMAN, a reinforcement learning framework that encourages robots to gain control over other entities in the environment.<n>We empirically demonstrate CAIMAN's superior sample efficiency and adaptability to diverse scenarios in simulation.
- Score: 17.94272840532448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling legged robots to perform non-prehensile loco-manipulation is crucial for enhancing their versatility. Learning behaviors such as whole-body object pushing often requires sophisticated planning strategies or extensive task-specific reward shaping, especially in unstructured environments. In this work, we present CAIMAN, a practical reinforcement learning framework that encourages the agent to gain control over other entities in the environment. CAIMAN leverages causal action influence as an intrinsic motivation objective, allowing legged robots to efficiently acquire object pushing skills even under sparse task rewards. We employ a hierarchical control strategy, combining a low-level locomotion module with a high-level policy that generates task-relevant velocity commands and is trained to maximize the intrinsic reward. To estimate causal action influence, we learn the dynamics of the environment by integrating a kinematic prior with data collected during training.We empirically demonstrate CAIMAN's superior sample efficiency and adaptability to diverse scenarios in simulation, as well as its successful transfer to real-world systems without further fine-tuning.
Related papers
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.
We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.
We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - Transferable Latent-to-Latent Locomotion Policy for Efficient and Versatile Motion Control of Diverse Legged Robots [9.837559106057814]
The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks.
We propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders.
We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
arXiv Detail & Related papers (2025-03-22T03:01:25Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Adaptive Manipulation using Behavior Trees [12.061325774210392]
We present the adaptive behavior tree, which enables a robot to quickly adapt to both visual and non-visual observations during task execution.
We test our approach on a number of tasks commonly found in industrial settings.
arXiv Detail & Related papers (2024-06-20T18:01:36Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe (Reinforced Learning) is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.
Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
arXiv Detail & Related papers (2024-04-03T13:28:52Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Latent Exploration for Reinforcement Learning [87.42776741119653]
In Reinforcement Learning, agents learn policies by exploring and interacting with the environment.
We propose LATent TIme-Correlated Exploration (Lattice), a method to inject temporally-correlated noise into the latent state of the policy network.
arXiv Detail & Related papers (2023-05-31T17:40:43Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Learning Pneumatic Non-Prehensile Manipulation with a Mobile Blower [30.032847855193864]
blowing controller must continually adapt to unexpected changes from its actions.
We introduce a multi-frequency version of the spatial action maps framework.
This allows for efficient learning of vision-based policies that effectively combine high-level planning and low-level closed-loop control.
arXiv Detail & Related papers (2022-04-05T17:55:58Z) - Adversarial Motion Priors Make Good Substitutes for Complex Reward
Functions [124.11520774395748]
Reinforcement learning practitioners often utilize complex reward functions that encourage physically plausible behaviors.
We propose substituting complex reward functions with "style rewards" learned from a dataset of motion capture demonstrations.
A learned style reward can be combined with an arbitrary task reward to train policies that perform tasks using naturalistic strategies.
arXiv Detail & Related papers (2022-03-28T21:17:36Z) - Learning Robotic Manipulation Skills Using an Adaptive Force-Impedance
Action Space [7.116986445066885]
Reinforcement Learning has led to promising results on a range of challenging decision-making tasks.
Fast human-like adaptive control methods can optimize complex robotic interactions, yet fail to integrate multimodal feedback needed for unstructured tasks.
We propose to factor the learning problem in a hierarchical learning and adaption architecture to get the best of both worlds.
arXiv Detail & Related papers (2021-10-19T12:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.