論文の概要: Achieving Equalized Odds by Resampling Sensitive Attributes
- arxiv url: http://arxiv.org/abs/2006.04292v1
- Date: Mon, 8 Jun 2020 00:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 01:27:10.226026
- Title: Achieving Equalized Odds by Resampling Sensitive Attributes
- Title(参考訳): 感性属性のサンプル化による等化オッドの獲得
- Authors: Yaniv Romano and Stephen Bates and Emmanuel J. Cand\`es
- Abstract要約: 等価性の概念をほぼ満足する予測モデルを学習するためのフレキシブルなフレームワークを提案する。
この微分可能な関数は、モデルパラメータを等化奇数に向けて駆動するペナルティとして使用される。
本研究は,予測規則が本性質に反するか否かを検出するための公式な仮説テストを開発する。
- 参考スコア(独自算出の注目度): 13.114114427206678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a flexible framework for learning predictive models that
approximately satisfy the equalized odds notion of fairness. This is achieved
by introducing a general discrepancy functional that rigorously quantifies
violations of this criterion. This differentiable functional is used as a
penalty driving the model parameters towards equalized odds. To rigorously
evaluate fitted models, we develop a formal hypothesis test to detect whether a
prediction rule violates this property, the first such test in the literature.
Both the model fitting and hypothesis testing leverage a resampled version of
the sensitive attribute obeying equalized odds, by construction. We demonstrate
the applicability and validity of the proposed framework both in regression and
multi-class classification problems, reporting improved performance over
state-of-the-art methods. Lastly, we show how to incorporate techniques for
equitable uncertainty quantification---unbiased for each group under study---to
communicate the results of the data analysis in exact terms.
- Abstract(参考訳): 等価性の概念をほぼ満足する予測モデルを学習するためのフレキシブルなフレームワークを提案する。
これは、この基準の違反を厳格に定量化する一般的な不一致関数を導入することで達成される。
この微分可能な関数は、モデルパラメータを等化奇数に向けて駆動するペナルティとして使用される。
適合モデルを評価するために,予測規則がこの性質に違反しているかどうかを検出するための形式的仮説テストを開発した。
モデルフィッティングと仮説テストの両方は、構成により等化奇数に従う感度属性の再サンプリング版を利用する。
提案手法の適用性と妥当性を回帰分類問題と多クラス分類問題の両方に適用し,最先端手法の性能向上を報告した。
最後に,不確実性定量化のための手法(研究対象グループごとに偏りのない)を組み込んで,データ分析の結果を厳密に伝える方法を示す。
関連論文リスト
- Generative vs. Discriminative modeling under the lens of uncertainty quantification [0.929965561686354]
本稿では,生成的アプローチと識別的アプローチの比較分析を行った。
両手法が,不確実性を考慮した推論において,様々な情報源からの情報を活用する能力を比較する。
本稿では,両手法の教師あり学習と,検討されたモデリング手法と互換性のあるセミ教師あり学習を実現するための一般的なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:32:43Z) - Hypothesis Testing for Class-Conditional Noise Using Local Maximum
Likelihood [1.8798171797988192]
教師付き学習では、学習が行われる前にラベルの質を自動的に評価することがオープンな研究課題である。
本稿では,本モデルが局所極大近似推定の積である場合,同様の手順を踏襲できることを示す。
この異なるビューは、よりリッチなモデルクラスへのアクセスを提供することで、テストのより広範な適用を可能にする。
論文 参考訳(メタデータ) (2023-12-15T22:14:58Z) - Leveraging Uncertainty Estimates To Improve Classifier Performance [4.4951754159063295]
バイナリ分類では、正のクラスのモデルスコアが、アプリケーション要求に基づいて選択されたしきい値を超えるかどうかに基づいて、インスタンスのラベルを予測する。
しかし、モデルスコアは真の肯定率と一致しないことが多い。
これは特に、クラス間の差分サンプリングを含むトレーニングや、トレインとテスト設定間の分散ドリフトがある場合に当てはまる。
論文 参考訳(メタデータ) (2023-11-20T12:40:25Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Logistic Regression Equivalence: A Framework for Comparing Logistic
Regression Models Across Populations [4.518012967046983]
本研究は, 個体群差に対する既定寛容レベルの同値試験が, 推論の精度を高めることを論じる。
診断データについては、等価モデルと等価でないモデルの例を示す。
論文 参考訳(メタデータ) (2023-03-23T15:12:52Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
いずれの要件も持たない個別の公正性をテストするための新しいアプローチについて述べる。
提案手法は,合成データセットと実世界のデータセットの識別を効果的に行う。
論文 参考訳(メタデータ) (2022-10-10T21:27:20Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。