論文の概要: Multi-step Estimation for Gradient-based Meta-learning
- arxiv url: http://arxiv.org/abs/2006.04298v1
- Date: Mon, 8 Jun 2020 00:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:05:32.405823
- Title: Multi-step Estimation for Gradient-based Meta-learning
- Title(参考訳): 勾配型メタラーニングのための多段階推定
- Authors: Jin-Hwa Kim, Junyoung Park, Yongseok Choi
- Abstract要約: 内部ステップの窓において,同じ勾配を再利用してコストを削減できる簡易かつ簡単な手法を提案する。
本手法は,トレーニング時間やメモリ使用量を大幅に削減し,競争精度を維持したり,場合によっては性能が向上することを示す。
- 参考スコア(独自算出の注目度): 3.4376560669160385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-based meta-learning approaches have been successful in few-shot
learning, transfer learning, and a wide range of other domains. Despite its
efficacy and simplicity, the burden of calculating the Hessian matrix with
large memory footprints is the critical challenge in large-scale applications.
To tackle this issue, we propose a simple yet straightforward method to reduce
the cost by reusing the same gradient in a window of inner steps. We describe
the dynamics of the multi-step estimation in the Lagrangian formalism and
discuss how to reduce evaluating second-order derivatives estimating the
dynamics. To validate our method, we experiment on meta-transfer learning and
few-shot learning tasks for multiple settings. The experiment on meta-transfer
emphasizes the applicability of training meta-networks, where other
approximations are limited. For few-shot learning, we evaluate time and memory
complexities compared with popular baselines. We show that our method
significantly reduces training time and memory usage, maintaining competitive
accuracies, or even outperforming in some cases.
- Abstract(参考訳): グラデーションベースのメタ学習アプローチは、少数の学習、転送学習、その他幅広い領域で成功している。
その有効性と単純さにもかかわらず、大きなメモリフットプリントを持つヘッセン行列を計算することの重荷は、大規模アプリケーションにおいて重要な課題である。
この問題に対処するために,内部ステップのウィンドウで同じ勾配を再利用してコストを削減する,単純かつ簡単な手法を提案する。
ラグランジュ形式論における多段階推定のダイナミクスを説明し、その力学を推定する二階微分を評価する方法について議論する。
提案手法を検証するために,複数設定のメタトランスファー学習およびマイトショット学習タスクを実験した。
メタトランスファーの実験は、他の近似が限られているトレーニングメタネットワークの適用性を強調している。
数ショットの学習では、一般的なベースラインと比較して時間とメモリの複雑さを評価する。
本手法は,トレーニング時間やメモリ使用量を大幅に削減し,競争精度を維持したり,場合によっては性能が向上することを示す。
関連論文リスト
- Meta-Value Learning: a General Framework for Learning with Learning
Awareness [1.4323566945483497]
メタバリューによって測定された長期的展望によって共同政策を判断することを提案する。
最適化のメタゲームにQラーニングの形式を適用し、ポリシー更新の連続的な行動空間を明示的に表現する必要がないようにする。
論文 参考訳(メタデータ) (2023-07-17T21:40:57Z) - Meta Learning to Bridge Vision and Language Models for Multimodal
Few-Shot Learning [38.37682598345653]
視覚モデルと言語モデルとのギャップを埋めるために,マルチモーダルなメタ学習手法を導入する。
我々は,凍結した大規模視覚と言語モデルを効率的にブリッジするためにメタラーナーとして機能するメタマッパーネットワークを定義する。
我々は,最近提案されたマルチモーダル・スショット・ベンチマークに対するアプローチを評価し,新しい視覚概念を単語に結合する速度を計測した。
論文 参考訳(メタデータ) (2023-02-28T17:46:18Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
本稿では,勾配ベクトル場の力学に適応するメタ学習アルゴリズムであるContinuous Meta-Learning(COMLN)を紹介する。
学習プロセスをODEとして扱うことは、軌跡の長さが現在連続しているという顕著な利点を提供する。
本稿では,実行時とメモリ使用時の効率を実証的に示すとともに,いくつかの画像分類問題に対して有効性を示す。
論文 参考訳(メタデータ) (2022-03-02T22:35:58Z) - Curriculum Meta-Learning for Few-shot Classification [1.5039745292757671]
本稿では,最新のメタ学習技術に適用可能なカリキュラム学習フレームワークの適応性を提案する。
数発の画像分類タスクにおけるMAMLアルゴリズムによる実験は,カリキュラムの学習フレームワークにおいて有意な効果を示した。
論文 参考訳(メタデータ) (2021-12-06T10:29:23Z) - One Step at a Time: Pros and Cons of Multi-Step Meta-Gradient
Reinforcement Learning [61.662504399411695]
より正確でロバストなメタ勾配信号を持つ複数の内部ステップを混合する新しい手法を提案する。
Snakeゲームに適用した場合、混合メタグラディエントアルゴリズムは、類似または高い性能を達成しつつ、その分散を3倍に削減することができる。
論文 参考訳(メタデータ) (2021-10-30T08:36:52Z) - Faster Meta Update Strategy for Noise-Robust Deep Learning [62.08964100618873]
我々は,メタグラデーションの最も高価なステップをより高速なレイヤワイズ近似に置き換えるために,新しいファMUS(Faster Meta Update Strategy)を導入する。
本手法は,同等あるいはさらに優れた一般化性能を維持しつつ,トレーニング時間の3分の2を節約できることを示す。
論文 参考訳(メタデータ) (2021-04-30T16:19:07Z) - Large-Scale Meta-Learning with Continual Trajectory Shifting [76.29017270864308]
メタリアナーがより多くの内部勾配ステップをとれるようにすることで、ヘテロジニアスタスクや大規模タスクの構造をよりよく把握できることを示す。
メタ更新の頻度を増やすために、タスク固有のパラメータの必要なシフトを推定することを提案する。
このアルゴリズムは, 一般化性能と収束性の両方において, 先行する一階メタ学習法を大きく上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-14T18:36:33Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - La-MAML: Look-ahead Meta Learning for Continual Learning [14.405620521842621]
オンライン連続学習のための高速最適化に基づくメタ学習アルゴリズムであるLook-ahead MAML(La-MAML)を提案する。
La-MAMLは他のリプレイベース、事前ベース、メタラーニングベースアプローチよりも優れたパフォーマンスを実現し、実世界の視覚分類ベンチマークで連続学習を行う。
論文 参考訳(メタデータ) (2020-07-27T23:07:01Z) - Regularizing Meta-Learning via Gradient Dropout [102.29924160341572]
メタ学習モデルは、メタ学習者が一般化するのに十分なトレーニングタスクがない場合、過度に適合する傾向がある。
本稿では,勾配に基づくメタ学習において過度に適合するリスクを軽減するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2020-04-13T10:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。