論文の概要: Cracking the Black Box: Distilling Deep Sports Analytics
- arxiv url: http://arxiv.org/abs/2006.04551v4
- Date: Mon, 29 Jun 2020 21:33:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 09:32:32.293049
- Title: Cracking the Black Box: Distilling Deep Sports Analytics
- Title(参考訳): ブラックボックスのクラック:ディープスポーツ分析を蒸留する
- Authors: Xiangyu Sun, Jack Davis, Oliver Schulte, Guiliang Liu
- Abstract要約: 本稿では,スポーツ分析に応用した深層学習における精度と透明性のトレードオフについて論じる。
我々は、元のディープラーニングモデルの出力を模倣し、学習した知識を明示的な解釈可能な方法で表現する、シンプルで透明なモデルを構築します。
- 参考スコア(独自算出の注目度): 17.35421731343764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the trade-off between Accuracy and Transparency for deep
learning applied to sports analytics. Neural nets achieve great predictive
accuracy through deep learning, and are popular in sports analytics. But it is
hard to interpret a neural net model and harder still to extract actionable
insights from the knowledge implicit in it. Therefore, we built a simple and
transparent model that mimics the output of the original deep learning model
and represents the learned knowledge in an explicit interpretable way. Our
mimic model is a linear model tree, which combines a collection of linear
models with a regression-tree structure. The tree version of a neural network
achieves high fidelity, explains itself, and produces insights for expert
stakeholders such as athletes and coaches. We propose and compare several
scalable model tree learning heuristics to address the computational challenge
from datasets with millions of data points.
- Abstract(参考訳): 本稿では,スポーツ分析に応用した深層学習における精度と透明性のトレードオフについて論じる。
ニューラルネットはディープラーニングを通じて予測精度が高く、スポーツ分析で人気がある。
しかし、ニューラルネットワークモデルを解釈することは難しく、その中に暗黙の知識から実行可能な洞察を抽出するのは難しいです。
そこで我々は,学習モデルの出力を模倣し,学習した知識を明示的に解釈可能な方法で表現する,単純で透明なモデルを構築した。
我々の模倣モデルは線形モデル木であり、線形モデルの集合と回帰木構造を組み合わせたものである。
ニューラルネットワークのツリーバージョンは高い忠実度を達成し、自身を説明し、アスリートやコーチといった専門家の利害関係者に洞察を与えます。
我々は,数百万のデータポイントを持つデータセットからの計算課題に対処するために,スケーラブルなモデル木学習ヒューリスティックを提案し,比較する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - The Contextual Lasso: Sparse Linear Models via Deep Neural Networks [5.607237982617641]
本研究では,空間的特徴の関数として空間的パターンと係数が変化するような説明的特徴に疎線形モデルに適合する新しい統計的推定器を開発する。
実データと合成データに関する広範な実験は、学習されたモデルは、非常に透明であり、通常のラッソよりもスペーサーであることを示している。
論文 参考訳(メタデータ) (2023-02-02T05:00:29Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
人間の事前知識とエンドツーエンドの学習を組み合わせることで、ディープニューラルネットワークの堅牢性を向上させることができることを示す。
我々のモデルは、部分分割モデルと小さな分類器を組み合わせて、オブジェクトを同時に部品に分割するようにエンドツーエンドに訓練されている。
実験の結果,これらのモデルによりテクスチャバイアスが低減され,一般的な汚職に対する堅牢性が向上し,相関が急上昇することが示唆された。
論文 参考訳(メタデータ) (2022-09-15T15:41:47Z) - Towards Learning a Vocabulary of Visual Concepts and Operators using
Deep Neural Networks [0.0]
我々は、MNIST画像を用いて訓練されたモデルの学習された特徴マップを分析し、より説明可能な予測を行う。
MNIST画像を用いて学習した変分オートエンコーダから視覚概念を生成する。
再建損失(平均2乗誤差)を初期値120から60に減らすことができた。
論文 参考訳(メタデータ) (2021-09-01T16:34:57Z) - LocalGLMnet: interpretable deep learning for tabular data [0.0]
一般化線形モデルと類似した特徴を共用する新しいネットワークアーキテクチャを提案する。
我々のアプローチは、シェープリー値と積分勾配の精神を加法的に分解する。
論文 参考訳(メタデータ) (2021-07-23T07:38:33Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
学習した深い特徴表現に疎い線形モデルを適用することで、よりデバッグ可能なニューラルネットワークを実現する方法を示す。
その結果、スパースな説明は、スプリアス相関を特定し、誤分類を説明し、視覚および言語タスクにおけるモデルバイアスを診断するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-11T08:15:25Z) - MLDS: A Dataset for Weight-Space Analysis of Neural Networks [0.0]
MLDSは、注意深く制御されたパラメータを持つ何千ものトレーニングニューラルネットワークからなる新しいデータセットである。
このデータセットは、モデル-to-modelとモデル-to-training-data関係に関する新たな洞察を可能にする。
論文 参考訳(メタデータ) (2021-04-21T14:24:26Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
データから性能モデルを導出する機械学習手法を提案する。
我々は、通常の微分方程式のコンパクトな系の観点から、それらの平均力学の決定論的近似を利用する。
これにより、ニューラルネットワークの解釈可能な構造が可能になり、システム測定からトレーニングしてホワイトボックスパラメータ化モデルを生成することができる。
論文 参考訳(メタデータ) (2020-02-25T10:56:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。