論文の概要: All your loss are belong to Bayes
- arxiv url: http://arxiv.org/abs/2006.04633v2
- Date: Thu, 5 Nov 2020 07:05:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:40:53.322415
- Title: All your loss are belong to Bayes
- Title(参考訳): 全ての損失はベイズのものだ
- Authors: Christian Walder and Richard Nock
- Abstract要約: ロス関数は機械学習の基盤であり、ほとんどのアルゴリズムの出発点である。
正方形ガウス過程を用いて経路が整合なソース関数を持つランダムな過程を求める。
実験の結果は、最先端技術よりも大幅に改善された。
- 参考スコア(独自算出の注目度): 28.393499629583786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Loss functions are a cornerstone of machine learning and the starting point
of most algorithms. Statistics and Bayesian decision theory have contributed,
via properness, to elicit over the past decades a wide set of admissible losses
in supervised learning, to which most popular choices belong (logistic, square,
Matsushita, etc.). Rather than making a potentially biased ad hoc choice of the
loss, there has recently been a boost in efforts to fit the loss to the domain
at hand while training the model itself. The key approaches fit a canonical
link, a function which monotonically relates the closed unit interval to R and
can provide a proper loss via integration. In this paper, we rely on a broader
view of proper composite losses and a recent construct from information
geometry, source functions, whose fitting alleviates constraints faced by
canonical links. We introduce a trick on squared Gaussian Processes to obtain a
random process whose paths are compliant source functions with many desirable
properties in the context of link estimation. Experimental results demonstrate
substantial improvements over the state of the art.
- Abstract(参考訳): 損失関数は機械学習の基盤であり、ほとんどのアルゴリズムの出発点である。
統計学とベイズ決定論は、過去数十年にわたって、最も一般的な選択肢(物流、正方形、松下など)が属する指導的学習において、幅広い許容範囲の損失をもたらしてきた。
損失の潜在的なバイアスのあるアドホックな選択を行うのではなく、最近はモデル自体をトレーニングしながら、ドメインに損失を適合させる取り組みが活発化しています。
鍵となるアプローチは、閉単位区間を R に単調に関連付け、積分による適切な損失を与える関数である標準リンクに適合する。
本稿では,正規リンクが直面する制約を緩和する情報幾何,情報源関数から,適切な合成損失のより広い視点と最近の構成を頼りにしている。
本稿では,リンク推定の文脈において,経路が望ましい多くの特性を持つソース関数に準拠したランダムなプロセスを得るために,二乗ガウス過程のトリックを導入する。
実験の結果、芸術の質は大幅に向上した。
関連論文リスト
- EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification [1.3778851745408134]
経験的リスク最小化フレームワーク内で損失関数を結合する新しいアンサンブル手法,すなわちEnsLossを提案する。
まず、損失のCC条件を損失導関数に変換し、明示的な損失関数の必要性を回避した。
理論的には、我々のアプローチの統計的一貫性を確立し、その利点に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-09-02T02:40:42Z) - LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
敵は、学習者に未知の任意の数kの損失関数を破損させることで、外れ値を導入することができる。
我々は,任意の数kで損失関数を破損させることで,敵が外乱を発生させることができる,頑健なオンラインラウンド最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T17:08:31Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Accelerated Neural Network Training with Rooted Logistic Objectives [13.400503928962756]
我々は、少なくともロジスティック損失と同じくらい厳密なエムの厳密凸関数列を導出する。
その結果,根付き損失関数による学習はより早く収束し,性能が向上した。
論文 参考訳(メタデータ) (2023-10-05T20:49:48Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - The Geometry and Calculus of Losses [10.451984251615512]
本稿では,二項・多クラス分類とクラス確率推定問題に対する損失関数の理論を開発する。
視点は3つの新しい機会を提供する。
これにより、これまで気付かなかったと思われる損失と(反)ノルムの基本的な関係の開発が可能になる。
第二に、凸集合の計算によって引き起こされる損失の計算の開発を可能にする。
第三に、パースペクティブは、損失を定義する凸集合の極双対から導かれる極の損失関数の自然な理論につながる。
論文 参考訳(メタデータ) (2022-09-01T05:57:19Z) - Gleo-Det: Deep Convolution Feature-Guided Detector with Local Entropy
Optimization for Salient Points [5.955667705173262]
本稿では, 深い畳み込み特徴のガイダンスを伴い, 繰り返し可能性の要求に基づき, きめ細かな制約を実現することを提案する。
畳み込み特徴のガイダンスを用いて、正と負の両面からコスト関数を定義する。
論文 参考訳(メタデータ) (2022-04-27T12:40:21Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Ensemble of Loss Functions to Improve Generalizability of Deep Metric
Learning methods [0.609170287691728]
本稿では,共有機能抽出器上に構築された異なる損失を結合する新しい手法を提案する。
我々は,従来のゼロショットラーニング(ZSL)設定において,マシンビジョン領域から一般的なデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-07-02T15:19:46Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
我々はReLU回帰の根本的な問題を考察する。
目的は、未知の分布から引き出された2乗損失に対して、最も適したReLUを出力することである。
論文 参考訳(メタデータ) (2020-05-26T16:26:17Z) - Supervised Learning: No Loss No Cry [51.07683542418145]
教師付き学習は最小化するために損失関数の仕様を必要とする。
本稿では,Kakade et al. (2011)のSLIsotronアルゴリズムを新しいレンズで再検討する。
損失を学習するための原則的な手順をいかに提供するかを示す。
論文 参考訳(メタデータ) (2020-02-10T05:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。