Graph Representation Learning Network via Adaptive Sampling
- URL: http://arxiv.org/abs/2006.04637v1
- Date: Mon, 8 Jun 2020 14:36:20 GMT
- Title: Graph Representation Learning Network via Adaptive Sampling
- Authors: Anderson de Andrade, Chen Liu
- Abstract summary: Graph Attention Network (GAT) and GraphSAGE are neural network architectures that operate on graph-structured data.
One challenge raised by GraphSAGE is how to smartly combine neighbour features based on graph structure.
We propose a new architecture to address these issues that is more efficient and is capable of incorporating different edge type information.
- Score: 4.996520403438455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Attention Network (GAT) and GraphSAGE are neural network architectures
that operate on graph-structured data and have been widely studied for link
prediction and node classification. One challenge raised by GraphSAGE is how to
smartly combine neighbour features based on graph structure. GAT handles this
problem through attention, however the challenge with GAT is its scalability
over large and dense graphs. In this work, we proposed a new architecture to
address these issues that is more efficient and is capable of incorporating
different edge type information. It generates node representations by attending
to neighbours sampled from weighted multi-step transition probabilities. We
conduct experiments on both transductive and inductive settings. Experiments
achieved comparable or better results on several graph benchmarks, including
the Cora, Citeseer, Pubmed, PPI, Twitter, and YouTube datasets.
Related papers
- InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
We propose a graph context-conditioned diffusion model called InstructG2I.
InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling.
A Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process.
arXiv Detail & Related papers (2024-10-09T17:56:15Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
Graph neural networks learn to represent nodes by aggregating information from their neighbors.
Several existing methods address this by sampling a small subset of nodes, scaling GNNs to much larger graphs.
We introduce GRAPES, an adaptive sampling method that learns to identify the set of nodes crucial for training a GNN.
arXiv Detail & Related papers (2023-10-05T09:08:47Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.