Graph Contrastive Learning with Augmentations
- URL: http://arxiv.org/abs/2010.13902v3
- Date: Sat, 3 Apr 2021 15:34:00 GMT
- Title: Graph Contrastive Learning with Augmentations
- Authors: Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang,
Yang Shen
- Abstract summary: We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
- Score: 109.23158429991298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalizable, transferrable, and robust representation learning on
graph-structured data remains a challenge for current graph neural networks
(GNNs). Unlike what has been developed for convolutional neural networks (CNNs)
for image data, self-supervised learning and pre-training are less explored for
GNNs. In this paper, we propose a graph contrastive learning (GraphCL)
framework for learning unsupervised representations of graph data. We first
design four types of graph augmentations to incorporate various priors. We then
systematically study the impact of various combinations of graph augmentations
on multiple datasets, in four different settings: semi-supervised,
unsupervised, and transfer learning as well as adversarial attacks. The results
show that, even without tuning augmentation extents nor using sophisticated GNN
architectures, our GraphCL framework can produce graph representations of
similar or better generalizability, transferrability, and robustness compared
to state-of-the-art methods. We also investigate the impact of parameterized
graph augmentation extents and patterns, and observe further performance gains
in preliminary experiments. Our codes are available at
https://github.com/Shen-Lab/GraphCL.
Related papers
- Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
This paper investigates the application of curriculum learning techniques to improve the performance of Heterogeneous Graph Neural Networks (GNNs)
To better classify the quality of the data, we design a loss-aware training schedule, named LTS, that measures the quality of every nodes of the data.
Our findings demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing complex graph-structured data.
arXiv Detail & Related papers (2024-02-29T05:44:41Z) - Subgraph Networks Based Contrastive Learning [5.736011243152416]
Graph contrastive learning (GCL) can solve the problem of annotated data scarcity.
Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations.
We propose a novel framework called subgraph network-based contrastive learning (SGNCL)
arXiv Detail & Related papers (2023-06-06T08:52:44Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervision is recently surging at its new frontier of graph learning.
GraphCL uses a prefabricated prior reflected by the ad-hoc manual selection of graph data augmentations.
We have extended the prefabricated discrete prior in the augmentation set, to a learnable continuous prior in the parameter space of graph generators.
We have leveraged both principles of information minimization (InfoMin) and information bottleneck (InfoBN) to regularize the learned priors.
arXiv Detail & Related papers (2022-01-04T15:49:18Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
We study graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification.
Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure.
Our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction.
arXiv Detail & Related papers (2020-06-11T21:17:56Z) - Differentiable Graph Module (DGM) for Graph Convolutional Networks [44.26665239213658]
Differentiable Graph Module (DGM) is a learnable function that predicts edge probabilities in the graph which are optimal for the downstream task.
We provide an extensive evaluation of applications from the domains of healthcare (disease prediction), brain imaging (age prediction), computer graphics (3D point cloud segmentation), and computer vision (zero-shot learning)
arXiv Detail & Related papers (2020-02-11T12:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.