論文の概要: Neural Architecture Search without Training
- arxiv url: http://arxiv.org/abs/2006.04647v3
- Date: Fri, 11 Jun 2021 14:31:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:04:37.104776
- Title: Neural Architecture Search without Training
- Title(参考訳): トレーニングなしのニューラルアーキテクチャ探索
- Authors: Joseph Mellor, Jack Turner, Amos Storkey, Elliot J. Crowley
- Abstract要約: 本研究では,未学習ネットワークにおけるデータポイント間のアクティベーションの重複について検討する。
ネットワークのトレーニングされたパフォーマンスを示すのに有用な指標を、どのように提供できるかを動機付けます。
この測度を単純なアルゴリズムに組み込むことで、単一のGPU上で数秒のトレーニングをすることなく、強力なネットワークを検索できるのです。
- 参考スコア(独自算出の注目度): 8.067283219068832
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The time and effort involved in hand-designing deep neural networks is
immense. This has prompted the development of Neural Architecture Search (NAS)
techniques to automate this design. However, NAS algorithms tend to be slow and
expensive; they need to train vast numbers of candidate networks to inform the
search process. This could be alleviated if we could partially predict a
network's trained accuracy from its initial state. In this work, we examine the
overlap of activations between datapoints in untrained networks and motivate
how this can give a measure which is usefully indicative of a network's trained
performance. We incorporate this measure into a simple algorithm that allows us
to search for powerful networks without any training in a matter of seconds on
a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201,
NATS-Bench, and Network Design Spaces. Our approach can be readily combined
with more expensive search methods; we examine a simple adaptation of
regularised evolutionary search. Code for reproducing our experiments is
available at https://github.com/BayesWatch/nas-without-training.
- Abstract(参考訳): ディープニューラルネットワークのハンドデザインに関わる時間と労力は膨大です。
これにより、この設計を自動化するためにneural architecture search (nas)技術の開発が進められた。
しかし、NASアルゴリズムは遅くてコストがかかる傾向にあり、探索プロセスに通知するためには大量の候補ネットワークを訓練する必要がある。
ネットワークの初期状態からネットワークのトレーニングされた精度を部分的に予測できれば、これは軽減できるでしょう。
本研究では,未学習ネットワークにおけるデータポイント間のアクティベーションの重なりについて検討し,ネットワークのトレーニングされた性能を示す有用な指標となる指標を与える方法について検討する。
この手法を,1つのGPU上で数秒のトレーニングをすることなく,強力なネットワークを探索する簡単なアルゴリズムに組み込んで,NAS-Bench-101,NAS-Bench-201,NATS-Bench,Network Design Spaces上での有効性を検証する。
提案手法は,より高価な探索手法と容易に組み合わせることができる。
実験を再現するためのコードは、https://github.com/bayeswatch/nas-without-trainingで利用できます。
関連論文リスト
- NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
我々は、トレーニングなしで最適なニューラルネットワークを特定するために、アクティベーションランク(NEAR)によるゼロコストプロキシネットワーク表現を提案する。
このネットワークスコアとNAS-Bench-101とNATS-Bench-SSS/TSSのモデル精度の最先端相関を実証した。
論文 参考訳(メタデータ) (2024-08-16T14:38:14Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
once-for-All(OFA)は、異なるリソース制約を持つデバイスのための効率的なアーキテクチャを探索する問題に対処するために設計された、ニューラルネットワーク検索(NAS)フレームワークである。
我々は,探索段階を多目的最適化問題として明示的に考えることにより,効率の追求を一歩進めることを目指している。
論文 参考訳(メタデータ) (2023-03-23T21:30:29Z) - You Can Have Better Graph Neural Networks by Not Training Weights at
All: Finding Untrained GNNs Tickets [105.24703398193843]
グラフニューラルネットワーク(GNN)の未訓練作業はまだ謎のままだ。
得られた未学習作品によって,GNNの過度なスムース化問題を大幅に軽減できることを示す。
また,そのような未学習作業が,入力摂動の分布外検出と堅牢性に優れていることも観察した。
論文 参考訳(メタデータ) (2022-11-28T14:17:36Z) - Evolutionary Neural Cascade Search across Supernetworks [68.8204255655161]
ENCAS - Evolutionary Neural Cascade Searchを紹介する。
ENCASは、複数の事前訓練されたスーパーネットを探索するために使用することができる。
我々は、一般的なコンピュータビジョンベンチマークでEMCASをテストする。
論文 参考訳(メタデータ) (2022-03-08T11:06:01Z) - Improving the sample-efficiency of neural architecture search with
reinforcement learning [0.0]
この作業では、Automated Machine Learning(AutoML)の領域にコントリビュートしたいと思っています。
我々の焦点は、最も有望な研究方向の一つ、強化学習である。
児童ネットワークの検証精度は、コントローラを訓練するための報奨信号として機能する。
我々は、これをより現代的で複雑なアルゴリズムであるPPOに修正することを提案する。
論文 参考訳(メタデータ) (2021-10-13T14:30:09Z) - Understanding and Accelerating Neural Architecture Search with
Training-Free and Theory-Grounded Metrics [117.4281417428145]
この作業は、ニューラルネットワークサーチ(NAS)のための原則的で統一的なトレーニングフリーフレームワークの設計を目標としている。
NASは、高性能ニューラルネットワークの発見を自動化するために爆発的に研究されてきたが、資源消費に悩まされ、しばしば訓練や近似によって探索バイアスを引き起こす。
我々は,検索ネットワークの「TEG」特性を解消し,NASを理解し,加速するための統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-26T17:52:07Z) - Neural Architecture Search on ImageNet in Four GPU Hours: A
Theoretically Inspired Perspective [88.39981851247727]
トレーニングフリーニューラルアーキテクチャサーチ(TE-NAS)という新しいフレームワークを提案する。
TE-NASは、ニューラルネットワークカーネル(NTK)のスペクトルと入力空間内の線形領域の数を分析することによってアーキテクチャをランク付けする。
1) この2つの測定はニューラルネットワークのトレーサビリティと表現性を示し, (2) ネットワークのテスト精度と強く相関することを示した。
論文 参考訳(メタデータ) (2021-02-23T07:50:44Z) - Direct Federated Neural Architecture Search [0.0]
本稿では,ハードウェアに依存せず,計算的に軽量な直接フェデレーションNASと,準備の整ったニューラルネットワークモデルを探すためのワンステージ手法を提案する。
以上の結果から, 従来技術の精度向上を図りながら, 資源消費の大幅な削減を図った。
論文 参考訳(メタデータ) (2020-10-13T08:11:35Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Fast Neural Network Adaptation via Parameter Remapping and Architecture
Search [35.61441231491448]
ディープニューラルネットワークは多くのコンピュータビジョンタスクにおいて顕著なパフォーマンスを達成する。
ほとんどの最新技術(SOTA)セマンティックセグメンテーションとオブジェクト検出アプローチは、バックボーンとしてイメージ分類用に設計されたニューラルネットワークアーキテクチャを再利用する。
しかし、大きな課題の1つは、画像Netによる検索空間表現の事前トレーニングが膨大な計算コストを発生させることである。
本稿では、シードネットワークのアーキテクチャとパラメータの両方を適応できる高速ニューラルネットワーク適応(FNA)手法を提案する。
論文 参考訳(メタデータ) (2020-01-08T13:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。