論文の概要: Unstructured Road Vanishing Point Detection Using the Convolutional
Neural Network and Heatmap Regression
- arxiv url: http://arxiv.org/abs/2006.04691v1
- Date: Mon, 8 Jun 2020 15:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 02:11:42.070494
- Title: Unstructured Road Vanishing Point Detection Using the Convolutional
Neural Network and Heatmap Regression
- Title(参考訳): 畳み込みニューラルネットワークとヒートマップ回帰を用いた非構造道路消滅点検出
- Authors: Yin-Bo Liu, Ming Zeng, Qing-Hao Meng
- Abstract要約: 本稿では,畳み込みニューラルネットワーク(CNN)と熱マップ回帰を組み合わせた新しい手法を提案する。
提案アルゴリズムは、まず軽量なバックボーン、すなわち深度的に畳み込み修正されたHRNetを採用し、非構造化道路画像の階層的特徴を抽出する。
高速かつ高精度な道路VP検出を実現するために, マルチスケール教師付き学習, ヒートマップ超解像, 座標回帰手法の3つの先進戦略を利用する。
- 参考スコア(独自算出の注目度): 3.8170259685864165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unstructured road vanishing point (VP) detection is a challenging problem,
especially in the field of autonomous driving. In this paper, we proposed a
novel solution combining the convolutional neural network (CNN) and heatmap
regression to detect unstructured road VP. The proposed algorithm firstly
adopts a lightweight backbone, i.e., depthwise convolution modified HRNet, to
extract hierarchical features of the unstructured road image. Then, three
advanced strategies, i.e., multi-scale supervised learning, heatmap
super-resolution, and coordinate regression techniques are utilized to achieve
fast and high-precision unstructured road VP detection. The empirical results
on Kong's dataset show that our proposed approach enjoys the highest detection
accuracy compared with state-of-the-art methods under various conditions in
real-time, achieving the highest speed of 33 fps.
- Abstract(参考訳): 非構造的道路消滅点(VP)検出は特に自動運転分野において難しい問題である。
本稿では,非構造道路VPを検出するために,畳み込みニューラルネットワーク(CNN)と熱マップ回帰を組み合わせた新しい手法を提案する。
提案手法はまず,非構造化道路画像の階層的特徴を抽出するために,軽量なバックボーン,すなわち奥行き方向畳み込み修正hrnetを採用する。
そして, 高速かつ高精度な道路VP検出を実現するために, マルチスケール教師付き学習, ヒートマップ超解像, 座標回帰手法の3つの先進戦略を利用する。
実験の結果,提案手法はリアルタイムに様々な条件下での最先端手法と比較して高い検出精度を示し,最高速度は33fpsであることがわかった。
関連論文リスト
- UHRNet: A Deep Learning-Based Method for Accurate 3D Reconstruction from
a Single Fringe-Pattern [3.5401671460123576]
本稿では,U字型高分解能ネットワーク(UHRNet)を用いて手法の精度を向上させることを提案する。
このネットワークは、UNetエンコーディングと復号構造をバックボーンとして使用し、マルチレベル畳み込みブロックと高分解能融合ブロックを適用している。
実験結果から,本手法は単一縞パターンから3次元再構成の精度を高めることができることがわかった。
論文 参考訳(メタデータ) (2023-04-23T08:39:05Z) - Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode
Decomposition and Res-UNet+ Neural Networks [0.0]
本稿では,高角交通カメラから車両軌跡を抽出する,機械学習による縦走査法を提案する。
空間時間マップ(STMap)をスパースフォアグラウンドおよびローランク背景に分解することにより,車両ストランドの抽出に動的モード分解(DMD)法を適用した。
Res-UNet+という名前のディープニューラルネットワークは、2つの一般的なディープラーニングアーキテクチャを適用することでセマンティックセグメンテーションタスクのために設計された。
論文 参考訳(メタデータ) (2022-01-13T00:49:24Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
本稿では,高効率単一画像超解像(SR)のための3レベルニューラルネットワーク探索法を提案する。
離散探索空間をモデル化するために、離散探索空間に新たな連続緩和を適用し、ネットワークパス、セル操作、カーネル幅の階層的混合を構築する。
階層型スーパーネット方式による最適化を行うため,効率的な探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-17T12:19:49Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
本稿では,ロバスト主成分分析(RPCA)問題に対するディープアンフォールディングに基づくネットワーク設計を提案する。
既存の設計とは異なり,本手法は連続するビデオフレームのスパース表現間の時間的相関をモデル化することに焦点を当てている。
移動MNISTデータセットを用いた実験により、提案したネットワークは、ビデオフォアグラウンドとバックグラウンドの分離作業において、最近提案された最先端のRPCAネットワークより優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T11:40:09Z) - Deep-3DAligner: Unsupervised 3D Point Set Registration Network With
Optimizable Latent Vector [15.900382629390297]
本稿では,3次元登録における技術的課題に対処するために,学習に最適化を統合する新しいモデルを提案する。
ディープトランスフォーメーションデコーディングネットワークに加えて、我々のフレームワークは最適化可能なディープアンダーラインSpatial UnderlineCorrelation UnderlineRepresentationを導入している。
論文 参考訳(メタデータ) (2020-09-29T22:44:38Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
本稿では、条件付きログを最大化するために、損失から導かれるネットワークアーキテクチャを提案する。
潜伏変数の層を複数の層に拡張することで、ネットワークは大規模に堅牢な機能を学ぶことができる。
実験では,提案アルゴリズムはリコール法と精度の両面で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-05-26T01:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。