論文の概要: Optimal Transport Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2006.04804v6
- Date: Fri, 8 Oct 2021 19:54:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 01:00:02.585636
- Title: Optimal Transport Graph Neural Networks
- Title(参考訳): 最適輸送グラフニューラルネットワーク
- Authors: Benson Chen and Gary B\'ecigneul and Octavian-Eugen Ganea and Regina
Barzilay and Tommi Jaakkola
- Abstract要約: 現在のグラフニューラルネットワーク(GNN)アーキテクチャは、集約グラフ表現に平均または総和ノードを埋め込む。
本稿では,パラメトリックプロトタイプを用いたグラフ埋め込み計算モデルOT-GNNを紹介する。
- 参考スコア(独自算出の注目度): 31.191844909335963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current graph neural network (GNN) architectures naively average or sum node
embeddings into an aggregated graph representation -- potentially losing
structural or semantic information. We here introduce OT-GNN, a model that
computes graph embeddings using parametric prototypes that highlight key facets
of different graph aspects. Towards this goal, we successfully combine optimal
transport (OT) with parametric graph models. Graph representations are obtained
from Wasserstein distances between the set of GNN node embeddings and
``prototype'' point clouds as free parameters. We theoretically prove that,
unlike traditional sum aggregation, our function class on point clouds
satisfies a fundamental universal approximation theorem. Empirically, we
address an inherent collapse optimization issue by proposing a noise
contrastive regularizer to steer the model towards truly exploiting the OT
geometry. Finally, we outperform popular methods on several molecular property
prediction tasks, while exhibiting smoother graph representations.
- Abstract(参考訳): 現在のグラフニューラルネットワーク(gnn)アーキテクチャは、平均的あるいは総和ノードを集約されたグラフ表現に埋め込みます。
ここでは、異なるグラフ側面のキーファセットをハイライトするパラメトリックプロトタイプを用いてグラフ埋め込みを計算するモデルOT-GNNを紹介する。
この目的に向けて、最適輸送(OT)とパラメトリックグラフモデルを組み合わせることに成功した。
グラフ表現は、自由パラメータとして、gnnノード埋め込みの集合と ``prototype'' 点雲の間のwasserstein距離から得られる。
理論上は、従来の和集合とは異なり、点クラウド上の函数クラスが基本的な普遍近似定理を満たすことを証明している。
実験的に,ノイズコントラスト正則化器を提案し,OT幾何を真に活用する手法を提案することにより,内在的な崩壊最適化問題に対処する。
最後に、より滑らかなグラフ表現を示しながら、いくつかの分子特性予測タスクで一般的な手法を上回った。
関連論文リスト
- From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、2つの重要なコンポーネントに依存している。
本稿では,学習可能なグラフテンプレートとの距離をグラフ表現のコアに配置する新しい視点を提案する。
この距離埋め込みは、Fused Gromov-Wasserstein (FGW) 距離という最適な輸送距離によって構築される。
論文 参考訳(メタデータ) (2022-05-31T12:24:01Z) - High-Order Pooling for Graph Neural Networks with Tensor Decomposition [23.244580796300166]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ構造化データモデリングの有効性と柔軟性から、注目を集めている。
本稿では,高次非線形ノード相互作用をモデル化するためにテンソル分解に依存する高表現性GNNアーキテクチャであるGraphized Neural Network (tGNN)を提案する。
論文 参考訳(メタデータ) (2022-05-24T01:12:54Z) - IV-GNN : Interval Valued Data Handling Using Graph Neural Network [12.651341660194534]
Graph Neural Network(GNN)は、グラフ上で標準的な機械学習を実行する強力なツールである。
本稿では,新しいGNNモデルであるInterval-ValuedGraph Neural Networkを提案する。
我々のモデルは、任意の可算集合は常に可算集合 $Rn$ の部分集合であるので、既存のモデルよりもはるかに一般である。
論文 参考訳(メタデータ) (2021-11-17T15:37:09Z) - Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural
Networks [74.26734952400925]
ノード埋め込み次元選択(NEDS)のための最小グラフエントロピー(MinGE)アルゴリズムを提案する。
ミンゲは、グラフ上の特徴エントロピーと構造エントロピーの両方を考えており、それらはそれらのリッチな情報の特徴に従って慎重に設計されている。
ベンチマークデータセット上で人気のグラフニューラルネットワーク(GNN)を用いた実験は,提案したMinGEの有効性と一般化性を示す。
論文 参考訳(メタデータ) (2021-05-07T11:40:29Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Pyramidal Reservoir Graph Neural Network [18.632681846787246]
本稿では,2種類の層を置換するディープグラフニューラルネットワーク(GNN)モデルを提案する。
グラフプーリングがモデルの計算複雑性をいかに低減するかを示す。
RCベースGNNの設計に対する提案手法は,精度と複雑性のトレードオフを有利かつ原則的に実現している。
論文 参考訳(メタデータ) (2021-04-10T08:34:09Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCNはグラフ学習に適したノード機能である。
エンドツーエンドでCatGCNを訓練し、半教師付きノード分類でそれを実証する。
論文 参考訳(メタデータ) (2020-09-11T09:25:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。