Novel Perception Algorithmic Framework For Object Identification and
Tracking In Autonomous Navigation
- URL: http://arxiv.org/abs/2006.04859v1
- Date: Mon, 8 Jun 2020 18:21:40 GMT
- Title: Novel Perception Algorithmic Framework For Object Identification and
Tracking In Autonomous Navigation
- Authors: Suryansh Saxena and Isaac K Isukapati
- Abstract summary: This paper introduces a novel perception framework that has the ability to identify and track objects in autonomous vehicle's field of view.
The framework makes use of ego-vehicle's pose estimation and a KD-Tree-based goal segmentation algorithm.
The effectiveness of the methodology is tested on a KITTI dataset.
- Score: 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel perception framework that has the ability to
identify and track objects in autonomous vehicle's field of view. The proposed
algorithms don't require any training for achieving this goal. The framework
makes use of ego-vehicle's pose estimation and a KD-Tree-based segmentation
algorithm to generate object clusters. In turn, using a VFH technique, the
geometry of each identified object cluster is translated into a multi-modal PDF
and a motion model is initiated with every new object cluster for the purpose
of robust spatio-temporal tracking. The methodology further uses statistical
properties of high-dimensional probability density functions and Bayesian
motion model estimates to identify and track objects from frame to frame. The
effectiveness of the methodology is tested on a KITTI dataset. The results show
that the median tracking accuracy is around 91% with an end-to-end
computational time of 153 milliseconds
Related papers
- Probable Object Location (POLo) Score Estimation for Efficient Object
Goal Navigation [15.623723522165731]
We introduce a novel framework centered around the Probable Object Location (POLo) score.
We further enhance the framework's practicality by introducing POLoNet, a neural network trained to approximate the computationally intensive POLo score.
Our experiments, involving the first phase of the OVMM 2023 challenge, demonstrate that an agent equipped with POLoNet significantly outperforms a range of baseline methods.
arXiv Detail & Related papers (2023-11-14T08:45:32Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOT is a novel framework that combines appearance and motion features of objects with geometric information to provide more accurate tracking.
Experimental results show remarkable performance in terms of HOTA, IDF1, and MOTA metrics in comparison with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T04:58:12Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Uncertainty Aware Active Learning for Reconfiguration of Pre-trained
Deep Object-Detection Networks for New Target Domains [0.0]
Object detection is one of the most important and fundamental aspects of computer vision tasks.
To obtain training data for object detection model efficiently, many datasets opt to obtain their unannotated data in video format.
Annotating every frame from a video is costly and inefficient since many frames contain very similar information for the model to learn from.
In this paper, we proposed a novel active learning algorithm for object detection models to tackle this problem.
arXiv Detail & Related papers (2023-03-22T17:14:10Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Single Object Tracking through a Fast and Effective Single-Multiple
Model Convolutional Neural Network [0.0]
Recent state-of-the-art (SOTA) approaches are proposed based on taking a matching network with a heavy structure to distinguish the target from other objects in the area.
In this article, a special architecture is proposed based on which in contrast to the previous approaches, it is possible to identify the object location in a single shot.
The presented tracker performs comparatively with the SOTA in challenging situations while having a super speed compared to them (up to $120 FPS$ on 1080ti)
arXiv Detail & Related papers (2021-03-28T11:02:14Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.