SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving
- URL: http://arxiv.org/abs/2305.06940v2
- Date: Thu, 15 Jun 2023 05:28:33 GMT
- Title: SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving
- Authors: Ning Ding, Ce Zhang, Azim Eskandarian
- Abstract summary: We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
- Score: 160.57870373052577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection (OD) is crucial to autonomous driving. On the other hand,
unknown objects, which have not been seen in training sample set, are one of
the reasons that hinder autonomous vehicles from driving beyond the operational
domain. To addresss this issue, we propose a saliency-based OD algorithm
(SalienDet) to detect unknown objects. Our SalienDet utilizes a saliency-based
algorithm to enhance image features for object proposal generation. Moreover,
we design a dataset relabeling approach to differentiate the unknown objects
from all objects in training sample set to achieve Open-World Detection. To
validate the performance of SalienDet, we evaluate SalienDet on KITTI,
nuScenes, and BDD datasets, and the result indicates that it outperforms
existing algorithms for unknown object detection. Notably, SalienDet can be
easily adapted for incremental learning in open-world detection tasks. The
project page is
\url{https://github.com/dingmike001/SalienDet-Open-Detection.git}.
Related papers
- Open-World Object Detection with Instance Representation Learning [1.8749305679160366]
We propose a method to train an object detector that can both detect novel objects and extract semantically rich features in open-world conditions.
Our method learns a robust and generalizable feature space, outperforming other OWOD-based feature extraction methods.
arXiv Detail & Related papers (2024-09-24T13:13:34Z) - Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise.
We propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations.
BDC is model-agnostic, requires no prior knowledge of the annotators' skill level, and seamlessly integrates with existing object detection models.
arXiv Detail & Related papers (2024-07-10T18:00:54Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Unsupervised Recognition of Unknown Objects for Open-World Object
Detection [28.787586991713535]
Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario.
Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns.
This paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects.
arXiv Detail & Related papers (2023-08-31T08:17:29Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Knowledge Combination to Learn Rotated Detection Without Rotated
Annotation [53.439096583978504]
Rotated bounding boxes drastically reduce output ambiguity of elongated objects.
Despite the effectiveness, rotated detectors are not widely employed.
We propose a framework that allows the model to predict precise rotated boxes.
arXiv Detail & Related papers (2023-04-05T03:07:36Z) - PROB: Probabilistic Objectness for Open World Object Detection [15.574535196804042]
Open World Object Detection (OWOD) is a new computer vision task that bridges the gap between classic object detection (OD) benchmarks and object detection in the real world.
We introduce a novel probabilistic framework for objectness estimation, where we alternate between probability distribution estimation and objectness likelihood of known objects.
The resulting Probabilistic Objectness transformer-based open-world detector, PROB, integrates our framework into traditional object detection models.
arXiv Detail & Related papers (2022-12-02T20:04:24Z) - Open-Set Object Detection Using Classification-free Object Proposal and
Instance-level Contrastive Learning [25.935629339091697]
Open-set object detection (OSOD) is a promising direction to handle the problem consisting of two subtasks: objects and background separation, and open-set object classification.
We present Openset RCNN to address the challenging OSOD.
We show that our Openset RCNN can endow the robot with an open-set perception ability to support robotic rearrangement tasks in cluttered environments.
arXiv Detail & Related papers (2022-11-21T15:00:04Z) - Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving [45.405303803618]
We investigate diversity-based active learning (AL) as a potential solution to alleviate the annotation burden.
We propose a novel acquisition function that enforces spatial and temporal diversity in the selected samples.
We demonstrate the effectiveness of the proposed method on the nuScenes dataset and show that it outperforms existing AL strategies significantly.
arXiv Detail & Related papers (2022-05-16T14:21:30Z) - Self-Supervised Object Detection via Generative Image Synthesis [106.65384648377349]
We present the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection.
We use collections of real world images without bounding box annotations to learn to synthesize and detect objects.
Our work advances the field of self-supervised object detection by introducing a successful new paradigm of using controllable GAN-based image synthesis for it.
arXiv Detail & Related papers (2021-10-19T11:04:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.