Calibrated neighborhood aware confidence measure for deep metric
learning
- URL: http://arxiv.org/abs/2006.04935v1
- Date: Mon, 8 Jun 2020 21:05:38 GMT
- Title: Calibrated neighborhood aware confidence measure for deep metric
learning
- Authors: Maryna Karpusha, Sunghee Yun, Istvan Fehervari
- Abstract summary: Deep metric learning has been successfully applied to problems in few-shot learning, image retrieval, and open-set classifications.
measuring the confidence of a deep metric learning model and identifying unreliable predictions is still an open challenge.
This paper focuses on defining a calibrated and interpretable confidence metric that closely reflects its classification accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep metric learning has gained promising improvement in recent years
following the success of deep learning. It has been successfully applied to
problems in few-shot learning, image retrieval, and open-set classifications.
However, measuring the confidence of a deep metric learning model and
identifying unreliable predictions is still an open challenge. This paper
focuses on defining a calibrated and interpretable confidence metric that
closely reflects its classification accuracy. While performing similarity
comparison directly in the latent space using the learned distance metric, our
approach approximates the distribution of data points for each class using a
Gaussian kernel smoothing function. The post-processing calibration algorithm
with proposed confidence metric on the held-out validation dataset improves
generalization and robustness of state-of-the-art deep metric learning models
while provides an interpretable estimation of the confidence. Extensive tests
on four popular benchmark datasets (Caltech-UCSD Birds, Stanford Online
Product, Stanford Car-196, and In-shop Clothes Retrieval) show consistent
improvements even at the presence of distribution shifts in test data related
to additional noise or adversarial examples.
Related papers
- Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - On the Calibration of Uncertainty Estimation in LiDAR-based Semantic
Segmentation [7.100396757261104]
We propose a metric to measure the confidence calibration quality of a semantic segmentation model with respect to individual classes.
We additionally suggest a double use for the method to automatically find label problems to improve the quality of hand- or auto-annotated datasets.
arXiv Detail & Related papers (2023-08-04T10:59:24Z) - Rapid Adaptation in Online Continual Learning: Are We Evaluating It
Right? [135.71855998537347]
We revisit the common practice of evaluating adaptation of Online Continual Learning (OCL) algorithms through the metric of online accuracy.
We show that this metric is unreliable, as even vacuous blind classifiers can achieve unrealistically high online accuracy.
Existing OCL algorithms can also achieve high online accuracy, but perform poorly in retaining useful information.
arXiv Detail & Related papers (2023-05-16T08:29:33Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
We introduce class-wise calibration within the framework of performance estimation for imbalanced datasets.
We conduct experiments on four tasks and find the proposed modifications consistently improve the estimation accuracy for imbalanced datasets.
arXiv Detail & Related papers (2022-07-20T15:04:32Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
We present the first study of how welthe confidence values of modern action recognition architectures indeed reflect the probability of the correct outcome.
We introduce a new approach which learns to transform the model output into realistic confidence estimates through an additional calibration network.
arXiv Detail & Related papers (2021-01-02T15:41:21Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.