論文の概要: 5* Knowledge Graph Embeddings with Projective Transformations
- arxiv url: http://arxiv.org/abs/2006.04986v2
- Date: Sun, 14 Mar 2021 16:46:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:24:53.828507
- Title: 5* Knowledge Graph Embeddings with Projective Transformations
- Title(参考訳): 5* 射影変換を用いた知識グラフ埋め込み
- Authors: Mojtaba Nayyeri, Sahar Vahdati, Can Aykul, Jens Lehmann
- Abstract要約: 射影幾何学における知識グラフ埋め込みモデル(5*E)を提案する。
インバージョン、リフレクション、翻訳、回転、ホモセティといった複数の同時変換をサポートする。
これは、最も広く使われているリンク予測ベンチマークにおいて、既存のアプローチよりも優れています。
- 参考スコア(独自算出の注目度): 13.723120574076127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Performing link prediction using knowledge graph embedding models has become
a popular approach for knowledge graph completion. Such models employ a
transformation function that maps nodes via edges into a vector space in order
to measure the likelihood of the links. While mapping the individual nodes, the
structure of subgraphs is also transformed. Most of the embedding models
designed in Euclidean geometry usually support a single transformation type -
often translation or rotation, which is suitable for learning on graphs with
small differences in neighboring subgraphs. However, multi-relational knowledge
graphs often include multiple sub-graph structures in a neighborhood (e.g.
combinations of path and loop structures), which current embedding models do
not capture well. To tackle this problem, we propose a novel KGE model (5*E) in
projective geometry, which supports multiple simultaneous transformations -
specifically inversion, reflection, translation, rotation, and homothety. The
model has several favorable theoretical properties and subsumes the existing
approaches. It outperforms them on the most widely used link prediction
benchmarks
- Abstract(参考訳): 知識グラフ埋め込みモデルを用いたリンク予測が知識グラフ補完の一般的なアプローチとなっている。
このようなモデルは、エッジを介してノードをベクトル空間にマッピングし、リンクの可能性を測定する変換関数を用いる。
個々のノードをマッピングしながら、サブグラフの構造も変換される。
ユークリッド幾何学で設計された埋め込みモデルは、通常、1つの変換タイプの変換や回転をサポートし、隣接する部分グラフに小さな違いがあるグラフの学習に適している。
しかし、多重関係的知識グラフは近隣の複数の部分グラフ構造(例えば、パスとループ構造の組み合わせ)を含むことが多く、現在の埋め込みモデルではうまく捉えられていない。
この問題に対処するために,複数の同時変換をサポートする射影幾何学における新しいKGEモデル(5*E)を提案する。
このモデルはいくつかの好ましい理論的性質を持ち、既存のアプローチを仮定する。
これは最も広く使われているリンク予測ベンチマークでそれらを上回っている
関連論文リスト
- Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
本稿では,一定曲率空間の積を完全に操作するトランスフォーマーの一般化を提案する。
また、非ユークリッド注意に対するカーネル化されたアプローチを提供し、ノード数とエッジ数に線形に時間とメモリコストでモデルを実行できるようにします。
論文 参考訳(メタデータ) (2023-09-08T02:44:37Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - BiQUE: Biquaternionic Embeddings of Knowledge Graphs [9.107095800991333]
既存の知識グラフ埋め込み(KGE)は、コンパクトにマルチリレーショナル知識グラフ(KG)を符号化する
KGEモデルでは、KGの多元関係を完全にカバーするために、複数の幾何変換を統一することが重要である。
複数の幾何変換を統合するために二元数を用いた新しいモデルであるBiQUEを提案する。
論文 参考訳(メタデータ) (2021-09-29T13:05:32Z) - Self-Supervised Graph Representation Learning via Topology
Transformations [61.870882736758624]
本稿では,グラフデータのノード表現のための自己教師型学習の一般的なパラダイムであるトポロジー変換同変表現学習について述べる。
実験では,提案手法を下流ノードおよびグラフ分類タスクに適用し,提案手法が最先端の教師なし手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-05-25T06:11:03Z) - Beyond permutation equivariance in graph networks [1.713291434132985]
我々は,n$-dimensions におけるユークリッド群に同値なグラフネットワークのための新しいアーキテクチャを提案する。
我々のモデルは、グラフネットワークを最も一般的な形で扱うように設計されており、特殊ケースとして特定の変種を含む。
論文 参考訳(メタデータ) (2021-03-25T18:36:09Z) - Motif Learning in Knowledge Graphs Using Trajectories Of Differential
Equations [14.279419014064047]
知識グラフ埋め込み(KGE)は、リンク予測タスクで有望なパフォーマンスを示している。
多くのKGEは平坦な幾何学を使い、複雑な構造を保存することができない。
正規微分方程式(ODE)の軌道上にKGのノードを埋め込む神経微分KGEを提案する。
論文 参考訳(メタデータ) (2020-10-13T20:53:17Z) - LineaRE: Simple but Powerful Knowledge Graph Embedding for Link
Prediction [7.0294164380111015]
本研究では,4つの接続パターンと4つのマッピング特性をモデル化可能な新しい埋め込みモデルLineaREを提案する。
複数の実世界のデータセットに対する実験結果から、提案したLineaREモデルは、リンク予測タスクのための既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2020-04-21T14:19:43Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。