Towards More Practical Adversarial Attacks on Graph Neural Networks
- URL: http://arxiv.org/abs/2006.05057v3
- Date: Wed, 27 Oct 2021 01:26:48 GMT
- Title: Towards More Practical Adversarial Attacks on Graph Neural Networks
- Authors: Jiaqi Ma, Shuangrui Ding, Qiaozhu Mei
- Abstract summary: We study the black-box attacks on graph neural networks (GNNs) under a novel and realistic constraint.
We show that the structural inductive biases of GNN models can be an effective source for this type of attacks.
- Score: 14.78539966828287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the black-box attacks on graph neural networks (GNNs) under a novel
and realistic constraint: attackers have access to only a subset of nodes in
the network, and they can only attack a small number of them. A node selection
step is essential under this setup. We demonstrate that the structural
inductive biases of GNN models can be an effective source for this type of
attacks. Specifically, by exploiting the connection between the backward
propagation of GNNs and random walks, we show that the common gradient-based
white-box attacks can be generalized to the black-box setting via the
connection between the gradient and an importance score similar to PageRank. In
practice, we find attacks based on this importance score indeed increase the
classification loss by a large margin, but they fail to significantly increase
the mis-classification rate. Our theoretical and empirical analyses suggest
that there is a discrepancy between the loss and mis-classification rate, as
the latter presents a diminishing-return pattern when the number of attacked
nodes increases. Therefore, we propose a greedy procedure to correct the
importance score that takes into account of the diminishing-return pattern.
Experimental results show that the proposed procedure can significantly
increase the mis-classification rate of common GNNs on real-world data without
access to model parameters nor predictions.
Related papers
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
We certify Graph Neural Networks (GNNs) against poisoning attacks, including backdoors, targeting the node features of a given graph.
Our framework provides fundamental insights into the role of graph structure and its connectivity on the worst-case behavior of convolution-based and PageRank-based GNNs.
arXiv Detail & Related papers (2024-07-15T16:12:51Z) - Link Stealing Attacks Against Inductive Graph Neural Networks [60.931106032824275]
A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data.
Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks.
This paper conducts a comprehensive privacy analysis of inductive GNNs through the lens of link stealing attacks.
arXiv Detail & Related papers (2024-05-09T14:03:52Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Sparse Vicious Attacks on Graph Neural Networks [3.246307337376473]
This work focuses on a specific, white-box attack to GNN-based link prediction models.
We propose SAVAGE, a novel framework and a method to mount this type of link prediction attacks.
Experiments conducted on real-world and synthetic datasets demonstrate that adversarial attacks implemented through SAVAGE indeed achieve high attack success rate.
arXiv Detail & Related papers (2022-09-20T12:51:24Z) - Adversarial Inter-Group Link Injection Degrades the Fairness of Graph
Neural Networks [15.116231694800787]
We present evidence for the existence and effectiveness of adversarial attacks on graph neural networks (GNNs) that aim to degrade fairness.
These attacks can disadvantage a particular subgroup of nodes in GNN-based node classification, where nodes of the underlying network have sensitive attributes, such as race or gender.
We conduct qualitative and experimental analyses explaining how adversarial link injection impairs the fairness of GNN predictions.
arXiv Detail & Related papers (2022-09-13T12:46:57Z) - What Does the Gradient Tell When Attacking the Graph Structure [44.44204591087092]
We present a theoretical demonstration revealing that attackers tend to increase inter-class edges due to the message passing mechanism of GNNs.
By connecting dissimilar nodes, attackers can more effectively corrupt node features, making such attacks more advantageous.
We propose an innovative attack loss that balances attack effectiveness and imperceptibility, sacrificing some attack effectiveness to attain greater imperceptibility.
arXiv Detail & Related papers (2022-08-26T15:45:20Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Generating Adversarial Examples with Graph Neural Networks [26.74003742013481]
We propose a novel attack based on a graph neural network (GNN) that takes advantage of the strengths of both approaches.
We show that our method beats state-of-the-art adversarial attacks, including PGD-attack, MI-FGSM, and Carlini and Wagner attack.
We provide a new challenging dataset specifically designed to allow for a more illustrative comparison of adversarial attacks.
arXiv Detail & Related papers (2021-05-30T22:46:41Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness.
Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance.
We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows.
We present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data.
arXiv Detail & Related papers (2020-09-08T02:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.