Link Stealing Attacks Against Inductive Graph Neural Networks
- URL: http://arxiv.org/abs/2405.05784v1
- Date: Thu, 9 May 2024 14:03:52 GMT
- Title: Link Stealing Attacks Against Inductive Graph Neural Networks
- Authors: Yixin Wu, Xinlei He, Pascal Berrang, Mathias Humbert, Michael Backes, Neil Zhenqiang Gong, Yang Zhang,
- Abstract summary: A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data.
Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks.
This paper conducts a comprehensive privacy analysis of inductive GNNs through the lens of link stealing attacks.
- Score: 60.931106032824275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data. Typically, GNNs can be implemented in two settings, including the transductive setting and the inductive setting. In the transductive setting, the trained model can only predict the labels of nodes that were observed at the training time. In the inductive setting, the trained model can be generalized to new nodes/graphs. Due to its flexibility, the inductive setting is the most popular GNN setting at the moment. Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks. However, a comprehensive privacy analysis of inductive GNN models is still missing. This paper fills the gap by conducting a systematic privacy analysis of inductive GNNs through the lens of link stealing attacks, one of the most popular attacks that are specifically designed for GNNs. We propose two types of link stealing attacks, i.e., posterior-only attacks and combined attacks. We define threat models of the posterior-only attacks with respect to node topology and the combined attacks by considering combinations of posteriors, node attributes, and graph features. Extensive evaluation on six real-world datasets demonstrates that inductive GNNs leak rich information that enables link stealing attacks with advantageous properties. Even attacks with no knowledge about graph structures can be effective. We also show that our attacks are robust to different node similarities and different graph features. As a counterpart, we investigate two possible defenses and discover they are ineffective against our attacks, which calls for more effective defenses.
Related papers
- Transferable Graph Backdoor Attack [13.110473828583725]
Graph Neural Networks (GNNs) have achieved tremendous success in many graph mining tasks.
GNNs are found to be vulnerable to unnoticeable perturbations on both graph structure and node features.
In this paper, we disclose the TRAP attack, a Transferable GRAPh backdoor attack.
arXiv Detail & Related papers (2022-06-21T06:25:37Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Structack: Structure-based Adversarial Attacks on Graph Neural Networks [1.795391652194214]
We study adversarial attacks that are uninformed, where an attacker only has access to the graph structure, but no information about node attributes.
We show that structure-based uninformed attacks can approach the performance of informed attacks, while being computationally more efficient.
We present a new attack strategy on GNNs that we refer to as Structack. Structack can successfully manipulate the performance of GNNs with very limited information while operating under tight computational constraints.
arXiv Detail & Related papers (2021-07-23T16:17:10Z) - Membership Inference Attack on Graph Neural Networks [1.6457778420360536]
We focus on how trained GNN models could leak information about the emphmember nodes that they were trained on.
We choose the simplest possible attack model that utilizes the posteriors of the trained model.
The surprising and worrying fact is that the attack is successful even if the target model generalizes well.
arXiv Detail & Related papers (2021-01-17T02:12:35Z) - Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks to
Any-Layer Graph Neural Networks via Influence Function [62.89388227354517]
Graph neural network (GNN), the mainstream method to learn on graph data, is vulnerable to graph evasion attacks.
Existing work has at least one of the following drawbacks: 1) limited to directly attack two-layer GNNs; 2) inefficient; and 3) impractical, as they need to know full or part of GNN model parameters.
We propose an influence-based emphefficient, direct, and restricted black-box evasion attack to emphany-layer GNNs.
arXiv Detail & Related papers (2020-09-01T03:24:51Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z) - Stealing Links from Graph Neural Networks [72.85344230133248]
Recently, neural networks were extended to graph data, which are known as graph neural networks (GNNs)
Due to their superior performance, GNNs have many applications, such as healthcare analytics, recommender systems, and fraud detection.
We propose the first attacks to steal a graph from the outputs of a GNN model that is trained on the graph.
arXiv Detail & Related papers (2020-05-05T13:22:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.