Human brain activity for machine attention
- URL: http://arxiv.org/abs/2006.05113v2
- Date: Fri, 2 Oct 2020 22:06:31 GMT
- Title: Human brain activity for machine attention
- Authors: Lukas Muttenthaler, Nora Hollenstein, Maria Barrett
- Abstract summary: We are the first to exploit neuroscientific data, namely electroencephalography (EEG), to inform a neural attention model about language processing of the human brain.
We devise a method for finding such EEG features to supervise machine attention through combining theoretically motivated cropping with random forest tree splits.
We apply these features to regularise attention on relation classification and show that EEG is more informative than strong baselines.
- Score: 8.673635963837532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitively inspired NLP leverages human-derived data to teach machines about
language processing mechanisms. Recently, neural networks have been augmented
with behavioral data to solve a range of NLP tasks spanning syntax and
semantics. We are the first to exploit neuroscientific data, namely
electroencephalography (EEG), to inform a neural attention model about language
processing of the human brain. The challenge in working with EEG data is that
features are exceptionally rich and need extensive pre-processing to isolate
signals specific to text processing. We devise a method for finding such EEG
features to supervise machine attention through combining theoretically
motivated cropping with random forest tree splits. After this dimensionality
reduction, the pre-processed EEG features are capable of distinguishing two
reading tasks retrieved from a publicly available EEG corpus. We apply these
features to regularise attention on relation classification and show that EEG
is more informative than strong baselines. This improvement depends on both the
cognitive load of the task and the EEG frequency domain. Hence, informing
neural attention models with EEG signals is beneficial but requires further
investigation to understand which dimensions are the most useful across NLP
tasks.
Related papers
- Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association.
We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies.
The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics.
arXiv Detail & Related papers (2024-09-27T22:52:31Z) - EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network [11.491355463353731]
We introduce the Retnet from natural language processing to EEG denoising.
Direct application of Retnet to EEG denoising is unfeasible due to the one-dimensional nature of EEG signals.
We propose the signal embedding method, transforming one-dimensional EEG signals into two dimensions for use as network inputs.
arXiv Detail & Related papers (2024-03-20T15:04:21Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
This study investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released EEG datasets.
arXiv Detail & Related papers (2023-07-28T14:51:09Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
We propose a simple yet efficient machine learning-based approach for the exemplary problem of hand gesture classification based on brain signals.
We demonstrate that this approach generalizes to different subjects with both EEG and ECoG data and achieves superior accuracy in the range of 92.74-97.07%.
arXiv Detail & Related papers (2023-04-21T16:23:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
We present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks.
We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal.
For a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines.
arXiv Detail & Related papers (2021-02-17T09:44:21Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.