Feature Estimation of Global Language Processing in EEG Using Attention Maps
- URL: http://arxiv.org/abs/2409.19174v1
- Date: Fri, 27 Sep 2024 22:52:31 GMT
- Title: Feature Estimation of Global Language Processing in EEG Using Attention Maps
- Authors: Dai Shimizu, Ko Watanabe, Andreas Dengel,
- Abstract summary: This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association.
We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies.
The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics.
- Score: 5.173821279121835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the correlation between EEG features and cognitive tasks is crucial for elucidating brain function. Brain activity synchronizes during speaking and listening tasks. However, it is challenging to estimate task-dependent brain activity characteristics with methods with low spatial resolution but high temporal resolution, such as EEG, rather than methods with high spatial resolution, like fMRI. This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association. We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies. EEGNet emerged as the most accurate model regarding subject independence and the classification of Listening and Speaking tasks. The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics. Our findings reveal that the characteristics discerned through attention maps vary significantly based on the input data, allowing for tailored feature extraction from EEG signals. By estimating features, our study reinforces known attributes and predicts new ones, potentially offering fresh perspectives in utilizing EEG for medical purposes, such as early disease detection. These techniques will make substantial contributions to cognitive neuroscience.
Related papers
- Focused State Recognition Using EEG with Eye Movement-Assisted Annotation [4.705434077981147]
Deep learning models for learning EEG and eye movement features proves effective in classifying brain activities.
A focused state indicates intense concentration on a task or thought. Distinguishing focused and unfocused states can be achieved through eye movement behaviors.
arXiv Detail & Related papers (2024-06-15T14:06:00Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
This paper introduces NeuroGNN, a dynamic Graph Neural Network (GNN) framework that captures the interplay between the EEG locations and the semantics of their corresponding brain regions.
Our experiments with real-world data demonstrate that NeuroGNN significantly outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2024-05-08T21:36:49Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Human brain activity for machine attention [8.673635963837532]
We are the first to exploit neuroscientific data, namely electroencephalography (EEG), to inform a neural attention model about language processing of the human brain.
We devise a method for finding such EEG features to supervise machine attention through combining theoretically motivated cropping with random forest tree splits.
We apply these features to regularise attention on relation classification and show that EEG is more informative than strong baselines.
arXiv Detail & Related papers (2020-06-09T08:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.