論文の概要: An Efficient Accelerator Design Methodology for Deformable Convolutional
Networks
- arxiv url: http://arxiv.org/abs/2006.05238v2
- Date: Sat, 13 Jun 2020 10:40:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 15:04:44.672468
- Title: An Efficient Accelerator Design Methodology for Deformable Convolutional
Networks
- Title(参考訳): 変形可能な畳み込みネットワークのための効率的な加速器設計手法
- Authors: Saehyun Ahn, Jung-Woo Chang, and Suk-Ju Kang
- Abstract要約: FPGA上での変形可能な畳み込みを高速化する新しい手法を提案する。
受容場を最適化することにより、受容場の最大サイズを12.6倍に圧縮することができる。
我々の加速器は最先端の加速器で最大17.25倍のスピードアップを達成した。
- 参考スコア(独自算出の注目度): 16.392643034008348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable convolutional networks have demonstrated outstanding performance
in object recognition tasks with an effective feature extraction. Unlike
standard convolution, the deformable convolution decides the receptive field
size using dynamically generated offsets, which leads to an irregular memory
access. Especially, the memory access pattern varies both spatially and
temporally, making static optimization ineffective. Thus, a naive
implementation would lead to an excessive memory footprint. In this paper, we
present a novel approach to accelerate deformable convolution on FPGA. First,
we propose a novel training method to reduce the size of the receptive field in
the deformable convolutional layer without compromising accuracy. By optimizing
the receptive field, we can compress the maximum size of the receptive field by
12.6 times. Second, we propose an efficient systolic architecture to maximize
its efficiency. We then implement our design on FPGA to support the optimized
dataflow. Experimental results show that our accelerator achieves up to 17.25
times speedup over the state-of-the-art accelerator.
- Abstract(参考訳): 変形可能な畳み込みネットワークは、効果的な特徴抽出によるオブジェクト認識タスクにおいて優れた性能を示した。
標準の畳み込みとは異なり、変形可能な畳み込みは動的に生成されたオフセットを使って受容野のサイズを決定する。
特に、メモリアクセスパターンは空間的にも時間的にも異なるため、静的な最適化は効果的ではない。
したがって、ナイーブな実装は過剰なメモリフットプリントにつながる。
本稿では,FPGA上の変形可能な畳み込みを高速化する新しい手法を提案する。
まず, 変形可能な畳み込み層における受容場の大きさを, 精度を損なうことなく低減する新しい学習法を提案する。
受容場を最適化することにより、受容場の最大サイズを12.6倍に圧縮することができる。
第2に,効率を最大化するための効率的なシストリックアーキテクチャを提案する。
次に、最適化されたデータフローをサポートするためにFPGAに設計を実装します。
実験の結果,我々の加速器は最先端の加速器よりも最大17.25倍のスピードアップを達成した。
関連論文リスト
- EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs [3.302913401404089]
スライディングウィンドウベースの静的スパースアテンションは、入力トークンのアテンションスコープを制限することで問題を緩和する。
本稿では,データフローを意識したFPGAベースのアクセラレーション設計であるSWATを提案する。
論文 参考訳(メタデータ) (2024-05-27T10:25:08Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
本稿では, Convolutional Transformer Layer (ConvFormer) を導入し, ConvFormer-based Super-Resolution Network (CFSR) を提案する。
CFSRは畳み込みベースのアプローチとトランスフォーマーベースのアプローチの両方の利点を継承する。
CFSRは計算コストと性能のバランスが最適であることを示す実験である。
論文 参考訳(メタデータ) (2024-01-11T03:08:00Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
一般のN:M空間パターンを利用して, フレキシブルかつ効率的にトランスフォーマーを高速化するアルゴリズム・ハードウェア協調最適化フレームワークを提案する。
我々は、N:Mスパーストランスをデプロイする際の大幅な高速化を実現するために、フレキシブルで効率的なハードウェアアーキテクチャ、すなわちSTAを提案する。
実験の結果, 他の方法と比較して, IDPを用いて生成したN:Mスパース変圧器は, トレーニング効率の高い精度で平均6.7%向上することがわかった。
論文 参考訳(メタデータ) (2022-08-12T04:51:49Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - Easy and Efficient Transformer : Scalable Inference Solution For large
NLP mode [14.321889138798072]
本稿では,超大規模事前学習モデル最適化手法を提案する。
推論エンジンとして Easy and Efficient Transformer (EET) が提案されている。
EETは、コンテキストの長さに応じて1.5-15倍のスピードアップを達成します。
論文 参考訳(メタデータ) (2021-04-26T11:00:56Z) - Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions [11.769185588579488]
本稿では,アクセル実装に適した特性とともに,メモリ消費と遅延を低減した最先端性能を示す。
提案手法は,エッジ数に比例するメモリを必要とする競合手法とは対照的に,グラフ内の頂点数に比例するメモリを用いる。
GNNが表現力を大幅に高める技術であるアグリゲーター融合を提案し、標準のスパース行列乗算よりも19%の遅延がわずかに増加している。
論文 参考訳(メタデータ) (2021-04-03T20:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。