End-to-end User Recognition using Touchscreen Biometrics
- URL: http://arxiv.org/abs/2006.05388v1
- Date: Tue, 9 Jun 2020 16:38:09 GMT
- Title: End-to-end User Recognition using Touchscreen Biometrics
- Authors: Micha{\l} Krzemi\'nski, Javier Hernando
- Abstract summary: The goal was to create an end-to-end system that can transparently identify users using raw data from mobile devices.
In the proposed system data from the touchscreen goes directly to the input of a deep neural network, which is able to decide on the identity of the user.
- Score: 11.394909061094463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the touchscreen data as behavioural biometrics. The goal was to
create an end-to-end system that can transparently identify users using raw
data from mobile devices. The touchscreen biometrics was researched only few
times in series of works with disparity in used methodology and databases. In
the proposed system data from the touchscreen goes directly, without any
processing, to the input of a deep neural network, which is able to decide on
the identity of the user. No hand-crafted features are used. The implemented
classification algorithm tries to find patterns by its own from raw data. The
achieved results show that the proposed deep model is sufficient enough for the
given identification task. The performed tests indicate high accuracy of user
identification and better EER results compared to state of the art systems. The
best result achieved by our system is 0.65% EER.
Related papers
- UserBoost: Generating User-specific Synthetic Data for Faster Enrolment into Behavioural Biometric Systems [8.812837829361923]
We show that utilising synthetic data alongside real data can reduce the number of real datapoints a user must provide to enrol into a biometric system.
We show that using synthetic gestures in training can improve classification ability for a real-world system.
arXiv Detail & Related papers (2024-07-12T09:10:07Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Few-Shot Learning for Biometric Verification [2.3226893628361682]
In machine learning applications, it is common practice to feed as much information as possible. In most cases, the model can handle large data sets that allow to predict more accurately.
We propose a novel end-to-end lightweight architecture that verifies biometric data by producing competitive results as compared to state-of-the-art accuracies through Few-Shot learning methods.
arXiv Detail & Related papers (2022-11-12T22:49:25Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
We design a series of forgery detection systems that each focus on one individual part of the face.
We use these detectors to perform detailed empirical analysis on the FaceForensics++, Celeb-DF, and Facebook Deepfake Detection Challenge datasets.
arXiv Detail & Related papers (2021-09-21T16:18:45Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study [0.5801044612920815]
Cross-dataset evaluation on face PAD showed better generalization than state of the art.
We propose the use of a single deep network trained to detect both face and iris attacks.
arXiv Detail & Related papers (2020-04-25T02:06:19Z) - Digit Recognition Using Convolution Neural Network [0.0]
This paper aims to extract a correct feature so that it can achieve better accuracy for recognition of digits.
The applications of digit recognition such as in password, bank check process, etc. to recognize the valid user identification.
The main objective of this work is to obtain highest accuracy 99.15% by using convolution neural network (CNN)
arXiv Detail & Related papers (2020-04-01T10:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.