Bell Non-Locality in Many Body Quantum Systems with Exponential Decay of
Correlations
- URL: http://arxiv.org/abs/2006.05537v1
- Date: Tue, 9 Jun 2020 22:41:44 GMT
- Title: Bell Non-Locality in Many Body Quantum Systems with Exponential Decay of
Correlations
- Authors: Carlos H. S. Vieira, Cristhiano Duarte, Raphael C. Drumond and Marcelo
Terra Cunha
- Abstract summary: This paper uses Bell-inequalities as a tool to explore non-classical physical behaviours.
We show that a large family of quantum many-body systems behave almost locally, violating Bell-inequalities (if so) only by a non-significant amount.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using Bell-inequalities as a tool to explore non-classical physical
behaviours, in this paper we analyze what one can expect to find in many-body
quantum physics. Concretely, framing the usual correlation scenarios as a
concrete spin-lattice, we want to know whether or not it is possible to violate
a Bell-inequality restricted to this scenario. Using clustering theorems, we
are able to show that a large family of quantum many-body systems behave almost
locally, violating Bell-inequalities (if so) only by a non-significant amount.
We also provide examples, explain some of our assumptions via counter-examples
and present all the proofs for our theorems. We hope the paper is
self-contained.
Related papers
- Effects of Topological Boundary Conditions on Bell Nonlocality [0.9374652839580183]
Bell nonlocality is the resource that enables device-independent quantum information processing tasks.
Our work can act as a guide to certify Bell nonlocality in many-qubit devices.
arXiv Detail & Related papers (2024-05-23T13:58:50Z) - Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing [0.0]
Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is one of the most striking features of quantum mechanics.
This work provides a general construction of Bell inequalities maximally violated by graph states of any prime local dimension.
We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities.
arXiv Detail & Related papers (2022-12-14T09:46:27Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - An elegant proof of self-testing for multipartite Bell inequalities [0.0]
This work presents a simple and broadly applicable self-testing argument for N-partite correlation Bell inequalities with two binary outcome observables per party.
To showcase the versatility of our proof technique, we obtain self-testing statements for N party Mermin-Ardehali-Bei-Klyshko (MABK) and Werner-Wolf-Weinfurter-.Zukowski-Brukner (WWW.ZB) family of linear Bell inequalities.
arXiv Detail & Related papers (2022-02-14T18:00:50Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Causal networks and freedom of choice in Bell's theorem [0.7637291629898925]
We show that the level of measurement dependence can be quantitatively upper bounded if we arrange the Bell test within a network.
We also prove that these results can be adapted in order to derive non-linear Bell inequalities for a large class of causal networks.
arXiv Detail & Related papers (2021-05-12T15:14:17Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Quantum Bell inequalities from Information Causality -- tight for
Macroscopic Locality [0.34771439623170125]
In a Bell test, the set of observed probability distributions complying with the principle of local realism is fully characterized by Bell inequalities.
We present a family of inequalities, which approximate the set of quantum correlations in Bell scenarios where the number of settings or outcomes can be arbitrary.
arXiv Detail & Related papers (2021-03-08T19:36:13Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.