Bell's theorem for trajectories
- URL: http://arxiv.org/abs/2001.00681v3
- Date: Tue, 11 Aug 2020 10:24:14 GMT
- Title: Bell's theorem for trajectories
- Authors: Dragoljub Go\v{c}anin, Aleksandra Dimi\'c, Flavio Del Santo and
Borivoje Daki\'c
- Abstract summary: A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In classical theory, the trajectory of a particle is entirely predetermined
by the complete set of initial conditions via dynamical laws. Based on this, we
formulate a no-go theorem for the dynamics of classical particles, i.e., a
Bell's inequality for trajectories, and discuss its possible violation in a
quantum scenario. A trajectory, however, is not an outcome of a quantum
measurement, in the sense that there is no observable associated with it, and
thus there is no "direct" experimental test of the Bell's inequality for
trajectories. Nevertheless, we show how to overcome this problem by considering
a special case of our generic inequality that can be experimentally tested
point-by-point in time. Such inequality is indeed violated by quantum
mechanics, and the violation persists during an entire interval of time and not
just at a particular singular instant. We interpret the violation to imply that
trajectories (or at least pieces thereof) cannot exist predetermined, within a
local-realistic theory.
Related papers
- A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - From no causal loop to absoluteness of cause: discarding the quantum NOT
logic [0.0]
AC principle restrains the time order' of two spacelike separated events/processes to be a potential cause of another event in their common future.
A strong form of violation enables instantaneous signaling, whereas a weak form of violation forbids the theory to be locally tomographic.
On the other hand, impossibility of an intermediate violation suffices to discard the universal quantum NOT logic.
arXiv Detail & Related papers (2021-09-21T04:24:25Z) - Quantum theory cannot violate a causal inequality [0.0]
In quantum theory, we can create superpositions of different causal orders of events, and observe interference between them.
This raises the question of whether quantum theory can produce results that would be impossible to replicate with any classical causal model.
We show that quantum experiments emphcan be simulated by a classical causal model, and therefore cannot violate a causal inequality.
arXiv Detail & Related papers (2021-01-22T13:51:14Z) - Nonlinear Schr\"odinger equations and generalized Heisenberg uncertainty
principle violating the principle of estimation independence [0.0]
We discuss possible extensions of quantum mechanics based on an operational scheme of estimation of momentum given positions.
Within the estimation scheme, the canonical quantum laws are reconstructed for a specific estimator and estimation error.
We argue that a broad class of nonlinearities and deviations from Heisenberg uncertainty principle arise from estimation errors.
arXiv Detail & Related papers (2020-09-11T13:27:40Z) - Bell Non-Locality in Many Body Quantum Systems with Exponential Decay of
Correlations [0.0]
This paper uses Bell-inequalities as a tool to explore non-classical physical behaviours.
We show that a large family of quantum many-body systems behave almost locally, violating Bell-inequalities (if so) only by a non-significant amount.
arXiv Detail & Related papers (2020-06-09T22:41:44Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - A strong no-go theorem on the Wigner's friend paradox [0.0]
We prove that if quantum evolution is controllable on the scale of an observer, then one of 'No-Superdeterminism', 'Locality' or 'Absoluteness of Observed Events' must be false.
We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived in a theory-independent manner.
arXiv Detail & Related papers (2019-07-12T08:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.