論文の概要: CNN-Based Semantic Change Detection in Satellite Imagery
- arxiv url: http://arxiv.org/abs/2006.05589v1
- Date: Wed, 10 Jun 2020 01:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 05:40:59.327692
- Title: CNN-Based Semantic Change Detection in Satellite Imagery
- Title(参考訳): 衛星画像におけるcnnに基づく意味変化検出
- Authors: Ananya Gupta, Elisabeth Welburn, Simon Watson, Hujun Yin
- Abstract要約: タイムリーな災害リスク管理には正確な道路地図が必要である。
現在、これは被災地域の衛星画像を手動でマークするボランティアによって行われている。
災害後の画像からアクセス可能な道路を特定するためのCNNベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.964113354446946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely disaster risk management requires accurate road maps and prompt damage
assessment. Currently, this is done by volunteers manually marking satellite
imagery of affected areas but this process is slow and often error-prone.
Segmentation algorithms can be applied to satellite images to detect road
networks. However, existing methods are unsuitable for disaster-struck areas as
they make assumptions about the road network topology which may no longer be
valid in these scenarios. Herein, we propose a CNN-based framework for
identifying accessible roads in post-disaster imagery by detecting changes from
pre-disaster imagery. Graph theory is combined with the CNN output for
detecting semantic changes in road networks with OpenStreetMap data. Our
results are validated with data of a tsunami-affected region in Palu, Indonesia
acquired from DigitalGlobe.
- Abstract(参考訳): タイムリーな災害リスク管理には正確な道路地図が必要である。
現在、これは被災地の衛星画像を手動でマークするボランティアによって行われているが、このプロセスは遅く、しばしばエラーを起こしやすい。
分割アルゴリズムは衛星画像に適用して道路網を検出することができる。
しかし、これらのシナリオではもはや有効ではない道路網のトポロジを仮定するため、既存の手法は災害現場には適さない。
本稿では,災害前の画像から変化を検出することで,災害後の画像からアクセス可能な道路を特定するためのCNNベースのフレームワークを提案する。
グラフ理論とCNN出力を組み合わせて,OpenStreetMapデータを用いた道路ネットワークの意味変化を検出する。
本研究は,インドネシアのパウル州でDigitalGlobeから取得した津波被害地域のデータを用いて検証した。
関連論文リスト
- Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
本稿では,地対衛星画像登録のための弱教師付き学習戦略を提案する。
地上画像ごとに正の衛星画像と負の衛星画像を導き出す。
また,クロスビュー画像の相対回転推定のための自己超越戦略を提案する。
論文 参考訳(メタデータ) (2024-09-10T12:57:16Z) - Evaluation of Pre-Trained CNN Models for Geographic Fake Image Detection [20.41074415307636]
我々は偽の衛星画像の出現を目撃しており、それは誤解を招く可能性があるし、国家の安全を脅かすかもしれない。
衛星画像検出のためのいくつかの畳み込みニューラルネットワーク(CNN)アーキテクチャの適合性について検討する。
この研究により、新たなベースラインの確立が可能となり、偽衛星画像検出のためのCNNベースの手法の開発に有用かもしれない。
論文 参考訳(メタデータ) (2022-10-01T20:37:24Z) - Convolutional Neural Processes for Inpainting Satellite Images [56.032183666893246]
Inpaintingは、既知のピクセルに基づいて何が欠けているかを予測することを含み、画像処理における古い問題である。
本研究では,LANDSAT 7衛星画像のスキャンライン塗装問題に対して,従来の手法や最先端のディープラーニング塗装モデルよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-05-24T23:29:04Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Updating Street Maps using Changes Detected in Satellite Imagery [28.25061267734934]
本稿では,衛星画像の進行を経時的に反映し,精度を大幅に向上させる手法を提案する。
我々のアプローチはまず、異なるタイミングで撮影した衛星画像を比較して、視覚的に変化した物理的道路網の一部を特定する。
変更に基づくアプローチは,マップ更新エラー率を4倍に削減することを示す。
論文 参考訳(メタデータ) (2021-10-13T02:50:26Z) - Segmentation of Roads in Satellite Images using specially modified U-Net
CNNs [0.0]
本研究の目的は,道路画像の特定を行う都市景観の衛星画像の分類器を構築することである。
従来のコンピュータビジョンアルゴリズムとは異なり、畳み込みニューラルネットワーク(CNN)はこのタスクに対して正確で信頼性の高い結果を提供する。
論文 参考訳(メタデータ) (2021-09-29T19:08:32Z) - SUREMap: Predicting Uncertainty in CNN-based Image Reconstruction Using
Stein's Unbiased Risk Estimate [51.67813146731196]
畳み込みニューラルネットワーク(CNN)は、コンピュータ画像再構成問題を解決する強力なツールとして登場した。
CNNはブラックボックスを理解するのが難しい。
この制限は、医療画像のような安全クリティカルな用途での利用にとって大きな障壁となる。
論文 参考訳(メタデータ) (2020-10-25T20:29:41Z) - Promoting Connectivity of Network-Like Structures by Enforcing Region
Separation [101.10228007363673]
本稿では,ネットワークのような構造を再構築するために,深い畳み込みネットワークをトレーニングするための接続性指向の損失関数を提案する。
私たちの喪失の背後にある主な考え方は、画像の背景領域間で発生する断線の観点から、道路や運河の接続性を表現することです。
2つの標準的な道路ベンチマークと、新しい灌水用運河のデータセットの実験において、損失関数で訓練されたコンブネットが道路接続を回復できることが示されている。
論文 参考訳(メタデータ) (2020-09-15T12:21:35Z) - TopoAL: An Adversarial Learning Approach for Topology-Aware Road
Segmentation [56.353558147044]
我々は,我々の目的に合わせたAL(Adversarial Learning)戦略を導入する。
我々は,道路網のどの部分が正しいかを示すラベルピラミッドを返す,より洗練された識別器を使用している。
挑戦的なRoadTracerデータセットでは、最先端のものよりも優れています。
論文 参考訳(メタデータ) (2020-07-17T16:06:45Z) - Deep Learning-based Aerial Image Segmentation with Open Data for
Disaster Impact Assessment [11.355723874379317]
セグメンテーションニューラルネットワークを利用したフレームワークは、災害後のシナリオで影響のある地域やアクセス可能な道路を特定するために提案されている。
航空画像セグメンテーションにおけるImageNetの事前訓練の有効性について検討した。
インドネシアのパウル島を襲った2018年の津波のデータから、提案された枠組みの有効性が示された。
論文 参考訳(メタデータ) (2020-06-10T00:19:58Z) - RoadTagger: Robust Road Attribute Inference with Graph Neural Networks [26.914950002847863]
衛星画像からレーン数や道路タイプなどの道路特性を推定することは困難である。
RoadTaggerは、畳み込みニューラルネットワーク(CNN)とグラフニューラルネットワーク(GNN)を組み合わせて、道路特性を推論するエンドツーエンドアーキテクチャである。
我々は米国20都市の688 km2の領域をカバーする大規模な実世界のデータセットと、合成マイクロデータセットの両方でRoadTaggerを評価した。
論文 参考訳(メタデータ) (2019-12-28T06:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。