論文の概要: Scalable Backdoor Detection in Neural Networks
- arxiv url: http://arxiv.org/abs/2006.05646v1
- Date: Wed, 10 Jun 2020 04:12:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 05:52:40.828861
- Title: Scalable Backdoor Detection in Neural Networks
- Title(参考訳): ニューラルネットワークにおけるスケーラブルなバックドア検出
- Authors: Haripriya Harikumar, Vuong Le, Santu Rana, Sourangshu Bhattacharya,
Sunil Gupta, and Svetha Venkatesh
- Abstract要約: ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
- 参考スコア(独自算出の注目度): 61.39635364047679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, it has been shown that deep learning models are vulnerable to
Trojan attacks, where an attacker can install a backdoor during training time
to make the resultant model misidentify samples contaminated with a small
trigger patch. Current backdoor detection methods fail to achieve good
detection performance and are computationally expensive. In this paper, we
propose a novel trigger reverse-engineering based approach whose computational
complexity does not scale with the number of labels, and is based on a measure
that is both interpretable and universal across different network and patch
types. In experiments, we observe that our method achieves a perfect score in
separating Trojaned models from pure models, which is an improvement over the
current state-of-the art method.
- Abstract(参考訳): 近年、ディープラーニングモデルはトロイア攻撃に弱いことが示されており、攻撃者はトレーニング中にバックドアをインストールして、小さなトリガーパッチで汚染されたサンプルを誤識別させることができる。
現在のバックドア検出手法は良好な検出性能を達成できず、計算コストがかかる。
本稿では,計算複雑性がラベル数に比例せず,異なるネットワークタイプとパッチタイプにまたがって解釈可能かつ普遍的な尺度に基づく,トリガーリバースエンジニアリングに基づく新しい手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
関連論文リスト
- Solving Trojan Detection Competitions with Linear Weight Classification [1.24275433420322]
既存のデータセットやドメインの多くで驚くほどうまく機能する検出器を導入します。
我々はこのアルゴリズムを、トロイの木馬検出ベンチマークとドメインの多種多様なセットで評価する。
論文 参考訳(メタデータ) (2024-11-05T19:00:34Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
バックドア検出のためのオープンセット分類タスクにモデルペアを用いることを提案する。
このスコアは、異なるアーキテクチャのモデルがあるにもかかわらず、バックドアの存在を示す指標であることを示している。
この技術は、オープンセット分類タスク用に設計されたモデル上のバックドアの検出を可能にするが、文献ではほとんど研究されていない。
論文 参考訳(メタデータ) (2024-02-28T21:29:16Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
本稿では,ネットワークアクティベーションに適用した2つのテンソル分解法によるバックドア検出手法を提案する。
これは、複数のモデルを同時に分析する機能など、既存の検出方法と比較して、多くの利点がある。
その結果,現在の最先端手法よりも,バックドアネットワークを高精度かつ効率的に検出できることがわかった。
論文 参考訳(メタデータ) (2024-01-06T03:08:28Z) - Backdoor Learning on Sequence to Sequence Models [94.23904400441957]
本稿では,シークエンス・ツー・シークエンス(seq2seq)モデルがバックドア攻撃に対して脆弱かどうかを検討する。
具体的には、データセットの0.2%のサンプルを注入するだけで、Seq2seqモデルに指定されたキーワードと文全体を生成することができる。
機械翻訳とテキスト要約に関する大規模な実験を行い、提案手法が複数のデータセットやモデルに対して90%以上の攻撃成功率を達成することを示した。
論文 参考訳(メタデータ) (2023-05-03T20:31:13Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
バックドア攻撃とも呼ばれるディープニューラルネットワークに対するトロイの木馬攻撃は、人工知能に対する典型的な脅威である。
FreeEagleは、複雑なバックドア攻撃を効果的に検出できる最初のデータフリーバックドア検出方法である。
論文 参考訳(メタデータ) (2023-02-28T11:31:29Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
本稿では,モデル構造の角度からバックドア機構を探索する。
攻撃成功率 (ASR) は, キースキップ接続の出力を減少させると著しく低下することを示した。
論文 参考訳(メタデータ) (2022-11-02T15:39:19Z) - An Adaptive Black-box Backdoor Detection Method for Deep Neural Networks [25.593824693347113]
ディープニューラルネットワーク(DNN)は、医療診断や自律運転など、さまざまな分野において前例のないパフォーマンスを示している。
それらは、ステルスシートリガーによって制御され、活性化されるニューラルトロイの木馬攻撃(NT)に対して脆弱である。
本稿では,事前訓練したトロイの木馬が展開前にトロイの木馬に検出されたかどうかを検査するロバストで適応的なトロイの木馬検出手法を提案する。
論文 参考訳(メタデータ) (2022-04-08T23:41:19Z) - Online Defense of Trojaned Models using Misattributions [18.16378666013071]
本稿では,推論時におけるディープニューラルネットワーク上のニューラルトロイの木馬検出手法を提案する。
MNIST, Fashion MNIST, German Traffic Sign Recognition Benchmark で訓練されたモデルを含む,いくつかのベンチマークに対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-03-29T19:53:44Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。