論文の概要: Machine learning and control engineering: The model-free case
- arxiv url: http://arxiv.org/abs/2006.05738v3
- Date: Mon, 20 Jul 2020 05:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 06:34:35.901751
- Title: Machine learning and control engineering: The model-free case
- Title(参考訳): 機械学習と制御工学: モデルフリーの場合
- Authors: Michel Fliess, C\'edric Join
- Abstract要約: 本稿では,モデルフリー制御(MFC)が機械学習(ML)の新しいツールであることを示す。
MFCは実装が容易で、制御工学において、ニューラルネットワークや強化学習を通じてMLに置き換えるべきである。
- 参考スコア(独自算出の注目度): 0.548253258922555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper states that Model-Free Control (MFC), which must not be confused
with Model-Free Reinforcement Learning, is a new tool for Machine Learning
(ML). MFC is easy to implement and should be substituted in control engineering
to ML via Artificial Neural Networks and/or Reinforcement Learning. A
laboratory experiment, which was already investigated via today's ML
techniques, is reported in order to confirm this viewpoint.
- Abstract(参考訳): 本稿では、モデルフリー強化学習と混同してはならないモデルフリー制御(MFC)が機械学習(ML)の新しいツールであることを述べる。
mfcは実装が容易であり、人工ニューラルネットワークや強化学習を通じて制御工学をmlに置き換えるべきである。
この点を確かめるために、今日のML技術で既に研究されている実験室実験が報告されている。
関連論文リスト
- AQMLator -- An Auto Quantum Machine Learning E-Platform [0.0]
AQMLatorは、ユーザからの最小限の入力で、MLモデルの量子層を自動的に提案し、トレーニングすることを目的としている。
標準のMLライブラリを使用するため、既存のMLパイプラインを簡単に導入できる。
論文 参考訳(メタデータ) (2024-09-26T23:23:27Z) - A General Framework for Data-Use Auditing of ML Models [47.369572284751285]
本稿では,データ所有者のデータを用いた学習におけるMLモデルの評価方法を提案する。
本稿では,2種類のMLモデルにおけるデータ利用を監査するために,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2024-07-21T09:32:34Z) - Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
本稿では、モデルとその推論の透明性と理解を高める機械学習(ML)の分野である、解釈可能な機械学習(IML)について検討する。
共有価値の原則とLarge Language Models(LLMs)のコンテキスト内学習機能を組み合わせた革新的なフレームワークを開発する。
本稿では,仮想テストベッドにおける需要応答イベント下での予測制御に基づく事前冷却モデルの実現可能性を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2024-02-14T21:19:33Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
本稿では,最近の機械学習技術,検証機構,潜在的攻撃について概説する。
新たな課題と今後の研究方向性を強調します。
本稿では、プライバシ、エクイティ、レジリエンスをMLシステムに統合するための貴重なリソースの提供を目的としている。
論文 参考訳(メタデータ) (2023-05-12T14:28:02Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Mutation Testing framework for Machine Learning [0.0]
機械学習モデルの失敗は、生命や財産の喪失という観点から、深刻な結果をもたらす可能性がある。
世界中の開発者、科学者、そしてMLコミュニティは、重要なMLアプリケーションのための信頼性の高いテストアーキテクチャを構築しなければなりません。
この記事では、機械学習システム(MLS)テスト、その進化、現在のパラダイム、将来の作業に関する洞察的な旅を提供します。
論文 参考訳(メタデータ) (2021-02-19T18:02:31Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。