論文の概要: Development of A Stochastic Traffic Environment with Generative
Time-Series Models for Improving Generalization Capabilities of Autonomous
Driving Agents
- arxiv url: http://arxiv.org/abs/2006.05821v1
- Date: Wed, 10 Jun 2020 13:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 06:17:32.184320
- Title: Development of A Stochastic Traffic Environment with Generative
Time-Series Models for Improving Generalization Capabilities of Autonomous
Driving Agents
- Title(参考訳): 自律運転エージェントの一般化能力向上のための時系列生成モデルを用いた確率的交通環境の開発
- Authors: Anil Ozturk, Mustafa Burak Gunel, Melih Dal, Ugur Yavas, Nazim Kemal
Ure
- Abstract要約: 我々は,実生活軌跡データに基づいてGAN(Generative Badrial Network)を訓練し,データ駆動交通シミュレータを開発した。
シミュレータは、車両間の実生活の交通相互作用に似たランダムな軌跡を生成する。
GANに基づく交通シミュレーターで訓練されたRLエージェントは、単純なルール駆動シミュレーターで訓練されたRLエージェントと比較して、より強力な一般化能力を有することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated lane changing is a critical feature for advanced autonomous driving
systems. In recent years, reinforcement learning (RL) algorithms trained on
traffic simulators yielded successful results in computing lane changing
policies that strike a balance between safety, agility and compensating for
traffic uncertainty. However, many RL algorithms exhibit simulator bias and
policies trained on simple simulators do not generalize well to realistic
traffic scenarios. In this work, we develop a data driven traffic simulator by
training a generative adverserial network (GAN) on real life trajectory data.
The simulator generates randomized trajectories that resembles real life
traffic interactions between vehicles, which enables training the RL agent on
much richer and realistic scenarios. We demonstrate through simulations that RL
agents that are trained on GAN-based traffic simulator has stronger
generalization capabilities compared to RL agents trained on simple rule-driven
simulators.
- Abstract(参考訳): 自動車線変更は、先進的な自動運転システムにとって重要な特徴である。
近年,交通シミュレータをトレーニングした強化学習(RL)アルゴリズムは,安全性,アジリティ,交通の不確実性補償のバランスを崩す車線変更ポリシの計算に成功している。
しかし、多くのRLアルゴリズムはシミュレータバイアスを示し、単純なシミュレータで訓練されたポリシーは現実的な交通シナリオに適さない。
本研究では,実生活軌跡データに対してgan(generative adverserial network)を訓練し,データ駆動トラヒックシミュレータを開発した。
シミュレータは、車両間の実生活の交通相互作用に似たランダムな軌道を生成し、よりリッチで現実的なシナリオでRLエージェントを訓練することができる。
我々は,ganベースのトラヒックシミュレータで訓練されたrlエージェントが,単純なルール駆動シミュレータで訓練されたrlエージェントよりも一般化能力が高いことをシミュレーションにより実証する。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning [38.63187494867502]
CtRL-Simは、リターン条件付きオフライン強化学習(RL)を利用して、リアクティブで制御可能なトラフィックエージェントを効率的に生成する手法である。
CtRL-Simは,エージェントの挙動を詳細に制御しながら,現実的な安全クリティカルシナリオを生成可能であることを示す。
論文 参考訳(メタデータ) (2024-03-29T02:10:19Z) - Purpose in the Machine: Do Traffic Simulators Produce Distributionally
Equivalent Outcomes for Reinforcement Learning Applications? [35.719833726363085]
本研究は,交通アプリケーションのための強化学習(RL)エージェントの訓練によく使用される2つのシミュレータであるCityFlowとSUMOに焦点を当てる。
制御された仮想実験では、運転者の挙動やシミュレーションスケールが、これらのシミュレータからRL関連測度における分布同値性を示す証拠を見出した。
これらの結果は,交通シミュレータはRLトレーニングのデウス・エグゼクティブ・マシンナではないことを示唆している。
論文 参考訳(メタデータ) (2023-11-14T01:05:14Z) - Learning Realistic Traffic Agents in Closed-loop [36.38063449192355]
強化学習(RL)は、違反を避けるために交通エージェントを訓練することができるが、RLのみを使用することで非人間的な運転行動をもたらす。
本稿では,交通規制制約の下で,専門家による実演と一致させるためにRTR(Reinforce Traffic Rules)を提案する。
実験の結果,RTRはより現実的で一般化可能な交通シミュレーションポリシーを学習することがわかった。
論文 参考訳(メタデータ) (2023-11-02T16:55:23Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
本研究では,実世界のトラフィックに基づくCARLAシミュレータにおけるインタラクティブな交通シナリオについて紹介する。
我々は数秒間続く戦術的タスクに集中しており、これは現在の制御方法では特に困難である。
CARLA Real Traffic Scenarios(CRTS)は、自動運転システムのトレーニングとテストの場になることを意図しています。
論文 参考訳(メタデータ) (2020-12-16T13:20:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。